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Abstract

In the last couple of decades, several cosmological experiments probing the Cosmic
Microwave Background (CMB) and the large-scale structure of the Universe have con-
firmed the wonderful agreement between data and the standard cosmological model,
the ΛCDM paradigm. According to the latter, our Universe is filled, besides ordinary
baryonic matter, with a cosmological constant which makes the expansion accelerate
and cold dark matter (CDM) as the main driver for structure formation. A small
amount of energy is carried by cosmological neutrinos. While the Standard Model
of particle physics predicts them to be massless, the detection of flavor oscillations
highlighted how they do indeed have a mass. Unfortunately, these experiments are
not able to constrain the mass scale. On the other hand cosmology has the power
to do so, thanks to the considerable impact that neutrinos have on the cosmological
observables.
Neutrinos decouple from the photon-baryon plasma in the very early Universe, when
they are still in the relativistic regime. While on large scales they essentially behave
like CDM, the high thermal velocities they possess prevent them from clustering,
at linear level, on scales smaller than the free-streaming length. This induces a
back-reaction on the growth of CDM density perturbations, which becomes scale-
dependent, and affects the matter power spectrum and all the observables that depend
upon it.
Future surveys like Euclid, the Large Synoptic Survey Telescope (LSST), the Dark
Energy Survey Instrument (DESI) and the Square Kilometer Array (SKA) will likely
measure the sum of the three neutrino masses (Mν) for the first time. In order to
have a correct estimate of Mν , considerable efforts must be made on the theoretical
side to assess which observables are the most suitable for the detection, to accurately
quantify the impact of neutrino mass on such observables and to carefully study of the
systematics, nuisances and biases that can affect such measurements. The research I
have been carrying out during my Ph.D. was developed with this goal in mind. This
thesis presents the main and most relevant results of papers published on refereed
journals, sorted according to the degree of non-linearity involved in the problem.
The first analysis presented extends previous works on the linear point (LP) of the
two-point correlation function (2PCF) to the case of massive neutrino cosmologies.
So far, the LP has been shown to be an excellent standard ruler for cosmology. By
using state-of-art N -body simulations, we show that also in cosmologies with massive
neutrinos the LP retains its nature of standard ruler for the CDM and halo real-space
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2PCF. To do so, we use a model-independent parametric fit in the range of scales of
the Baryon Acoustic Oscillations (BAOs). We also propose a procedure to constrain
neutrino masses by comparing the measured LP from data to the LP of a mock galaxy
catalog with massless neutrinos and the same remaining cosmological parameters. We
find that the sum of the neutrino masses could in principle be detected provided that
several redshift bins are used, the survey volume is sufficiently large and the shot
noise of the galaxy sample is sufficiently low.
In the second work we investigate the possibility that the degeneracies between the
effects of neutrino mass and those of baryons on the large-scale matter distribution
(e.g. AGN feedback, galactic winds) could bias the measurement of Mν in future
surveys probing galaxy clustering and cosmic shear. To this end, we generate synthetic
data sets and fit them using the Markov Chain Monte Carlo (MCMC) technique.
Baryon feedback is modelled with fitting functions that describe the suppression to
the matter power spectrum through free parameters with well-established physical
meaning, while neutrinos are modelled through the HALOFIT operator calibrated
on N -body simulations. The covariance matrix entering in the likelihood function
contains cosmic variance and shot/shape noise as sources of statistical uncertainties,
while theoretical inaccuracies are accounted for through a mode-coupling function
with a given correlation length. For the weak lensing analysis we also take into
account the systematic carried by the intrinsic alignment effect. Overall, for both
clustering and shear, we are always able to recover the right input neutrino mass well
within 1-σ. In the shear survey, we also report some interesting degeneracy between
Mν and the parameter controlling the amplitude of the intrinsic alignment effect.
Finally, the third work concerns the clustering of relic neutrinos in the Milky Way.
Since neutrinos are massive, they feel the gravitational attraction of the Galaxy and
should therefore be more abundant at the Earth position than the average cosmolog-
ical value. This could enhance the event rate of future experiments aiming at a direct
detection of the cosmic neutrino background. This work improves past analyses by
performing full 3-D calculations and including in the budget close-by structures like
the Virgo cluster and the Andromeda galaxy. The neutrino clustering is computed
by back-tracking particles in the Milky Way gravitational field using the N -one body
technique. Our results overall confirm previous findings, but highlight how the con-
tribution of the Virgo cluster is relevant. The local neutrino density (and in turn the
detection rate) is found to be enhanced by 0.53% for a neutrino mass of 10 meV, 12%
for 50 meV, 50% for 100 meV or 500% for 300 meV.

vi



List of publications

The following thesis is the result of the scientific research that I carried out as a Ph.D.

student in the Astrophysics & Cosmology sector at SISSA, Trieste (Italy), under the

supervision of Prof. Matteo Viel and in collaboration with several people from SISSA

as well as other different institutions. In particular, this thesis is based upon the

following publications:

• G. Parimbelli, M. Viel, E. Sefusatti

On the degeneracy between baryon feedback and massive neutrinos as probed by

matter clustering and weak lensing

JCAP01(2019)010, arXiv:1809.06634

• P. Mertsch, G. Parimbelli, P.F. de Salas, S. Gariazzo, J. Lesgourgues, S. Pastor

Neutrino clustering in the Milky Way and beyond

JCAP01(2020)015, arXiv:1910.13388

• G. Parimbelli, S. Anselmi, M. Viel, C. Carbone, F. Villaescusa-Navarro, P.S.

Corasaniti, Y. Rasera, R. Sheth, G.D. Starkman and I. Zehavi

The effects of massive neutrinos on the linear point of the correlation function

Submitted to JCAP, arXiv:2007.10345

• G. Parimbelli, G. Scelfo, M. Viel, A. Schneider, S. Camera

Testing degeneracies among non-standard dark matter paradigms with cosmic

shear

in prep., (2021)

vii

https://iopscience.iop.org/article/10.1088/1475-7516/2019/01/010
https://arxiv.org/abs/1809.06634
https://iopscience.iop.org/article/10.1088/1475-7516/2020/01/015
https://arxiv.org/abs/1910.13388
https://arxiv.org/abs/2007.10345




List of Figures

1.1 The black solid line shows the matter linear matter power spectrum

at z = 0 computed using the best-fit parameters from Planck (2018)

in the ΛCDM model. The dotted black line represents the non-linear

counterpart (see Section 1.4.4 for an insight). Dots of different colors

are extrapolated values for P (k) - coming from different experiments

and probes - which are in impressive agreement with theory over four

decades in scales. Taken from Planck Collaboration (2018). . . . . . . 21

1.2 Summary of two-point statistics for total matter in the ΛCDM model.

In the left panel power spectra at different redshifts are shown whereas

in the right panels we display 2PCF multiplied by a r2 factor to better

show the BAO feature. Solid lines show the non-linear prediction ac-

cording to Mead et al. (2015), where we have also smoothed the BAO

peak using the prescription of Tegmark et al. (2006). Dashed lines

instead represent linear theory. Different colors label different redshift. 25

1.3 Shear power spectrum for a distribution of galaxies in 3 redshift bins.

The distribution is chosen to be P(z) ∝ z2 exp (−z/0.24), the bin

edges are at z = 0.1, 0.478, 0.785, 1.5. In each panel, the solid black

line represents the measured shear power spectrum for that pair of bins.

The latter can be split into the cosmological signal (solid blue lines)

and the intrinsic alignment contributions (GI in green, II in red).

The dotted lines represent the same quantities, but assuming linear

theory for the matter power spectrum. The dotted magenta line is the

shape-noise term, where we assumed a RMS ellipticity of 0.3. Gold

shaded areas represent the cosmic variance expected from a survey

with fsky = 0.366; grey shaded areas are regions were measurements

will likely be excluded from the analysis in future surveys. . . . . . . 31

ix



2.1 The two allowed schemes for neutrino masses: normal hierarchy (NH)

and inverted hierarchy (IH). The minimum masses allowed in each

scenario are found by setting the lowest neutrino eigenstate mass to

zero. Taken from Lesgourgues & Pastor (2006). . . . . . . . . . . . . 36

2.2 Evolution of density parameters as a function of scale factor or, equiva-

lently, redshift for a flat Universe. The green line is the radiation den-

sity parameter that dominates at early times before dropping down,

leaving the stage to a matter dominated era (with baryons in red and

CDM in blue). The black line is the cosmological constant. The solid,

dashed and dotted lines represent the density parameter of three differ-

ent neutrino species with masses 0.05, 0.01 and 0 eV, respectively. As

it can be clearly seen, the most massive species become non-relativistic

first and when it occurs, they start behaving like a pressureless fluid.

The total energy density (which is always equal to 1) is denoted by

the dotted black line. Finally, the dot-dashed vertical line at a = 1

denotes present time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Impact of neutrino mass on various distance measures as a function of

redshift. Top panels show the inverse Hubble distance measure c/H

(left), the comoving distance (center, accompanied by the luminosity

distance - dashed line - and the angular diameter distance - dot-dashed

line) and the isotropic volume distance (right) for a ΛCDM Universe.

Bottom panels show the relative differences when including one massive

neutrino species with Mν = 0.2, 0.4, 0.6 eV, denoted by the dashed,

dot-dashed and dotted lines respectively. . . . . . . . . . . . . . . . . 41

2.4 Suppression due to massive neutrinos in various power spectra at z = 0.

Different colors label different Mν (a single massive species is assumed):

blue for 0.2 eV, red for 0.4 eV, green for 0.6 eV. Solid lines represent the

non-linear suppression on the total matter power spectrum according

to eq. 2.33, whereas dashed and dotted lines do the same for the linear

total matter and CDM plus baryons power spectra, respectively. . . . 47

2.5 Impact of neutrino mass on the 2PCF of CDM+b at z = 0. The top

panel shows both the linear (dashed lines) and the non-linear (solid

lines) 2PCFs for different neutrino masses: ΛCDM in black, 0.2 eV in

blue, 0.4 eV in red, 0.6 eV in green. A single massive neutrino species

is assumed. The bottom panel shows the ratios of all the above said

2PCFs with respect to the ΛCDM case. . . . . . . . . . . . . . . . . . 50

x



2.6 Impact of massive neutrinos on the shear power spectrum. The same

settings of fig. 1.3 (redshift bins, galaxy distribution and cosmological

parameters except for neutrino mass) have been used here. In each

panel we show the suppression on the measured shear power spectrum

(black lines), split in its contributions (GG in blue, GI in green, II in

red), with respect to the ΛCDM case. Solid lines show such suppression

for Mν = 0.2 eV, dashed lines for 0.4 eV and dotted lines for 0.6

eV. Grey bands show multipole regions likely excluded in upcoming

surveys. Gold shaded areas represent cosmic variance for a survey

with fsky = 0.366. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 2PCF of CDM from the DEMNUni and the Quijote sets, as measured

with eq. 3.3. We show here, only for the common redshift between

the two sets, the 2PCF multiplied by r2 and divided by the σ2
8 and the

growth factor for ΛCDM squared in order to make it easier a compar-

ison between different sets. To facilitate the comparison, we plot the

mean of the 50 DEMNUni and of the first 50 Quijote realizations, each

with an uncertainty corresponding to the standard error on the mean.

In the left panels we display the two ΛCDM cases, with the DEMNUni

in dark red and the Quijote in dark blue; the right panels are left for

the massive neutrino models, with the DEMNUni in light red and the

Quijote with 0.1 eV (0.2 eV) in blue (light blue). . . . . . . . . . . . 63

3.2 Covariance of the 2PCF in our simulations for the ΛCDM at z = 0.

The left panels refer to the DEMNUni set, while the right panels show

the same but for the Quijote simulations. Here we rescale the covari-

ance by the number of realizations, i.e. we represent the covariance of

the 2PCF in a cubic box of side 1000 Mpc/h. Dots and diamonds repre-

sent the measured covariance of CDM (top panels) and halos (bottom),

respectively, while solid and dashed lines are the analytical equivalent

under the assumption of a Gaussian density field (see eq. 3.9). Differ-

ent colors label different elements of the covariance matrix: red is for

the diagonal elements (i.e. the variance of the 2PCF), while blue, green

and yellow show respectively the 10-th, 20-th and 30-th off-diagonal el-

ements (with an offset introduced for sake of clarity). . . . . . . . . . 65

xi



3.3 The evolution of the dip (left), LP (center) and peak (right) positions of

the cold dark matter plus baryons 2PCF in the z−Mν plane, according

to linear theory. For each neutrino mass, the percentage difference

between the quantity considered and its value at z = 0 is plotted.

Solid contour lines denote positive differences, whereas dashed lines

denote negative values. Here we keep σ8 fixed for different neutrino

masses, but the result for fixed As is almost identical. . . . . . . . . . 66

3.4 We plot 68% confidence limits on the position of the dip, the peak and

the LP of the 2PCF for every snapshot of our simulation sets. The

top panels refer to the DEMNUni set, for which we have the ΛCDM

model (top left) and the massive neutrino model (top center). The

bottom panels refer to the Quijote set with its three different models:

ΛCDM (bottom left), Mν = 0.1 eV (bottom center) and Mν = 0.2

eV (bottom right). For each subpanel, dotted vertical lines represent

the linear-theory prediction of the LP. The gray area shows the ±0.5%

LP intrinsic-bias range identified in Anselmi et al. (2016) (see main

text). The remaining solid and dashed lines show the evolution in

redshift of the LP, the dip and the peak, respectively, according to

eq. 3.11. Blue and red bars refer to the results for CDM and halos,

respectively. Small offsets with respect to the snapshot redshifts have

been introduced for the sake of clarity. In the Quijote sector, the red

bars relative to the z = 3 snapshot are missing because the high shot

noise made it impossible to have a clear estimate of the LP. It can

be noticed that the LP is particularly stable and always in agreement

with the linear prediction at the 0.5% level both for ΛCDM and when

massive neutrinos are included. . . . . . . . . . . . . . . . . . . . . . 69

3.5 Signal-to-noise ratio, computed with eq. 3.12, for a possible neutrino

mass detection using the LP shift with respect to the ΛCDM case. The

S/N caused by a neutrino mass of 0.1 (0.2) eV is displayed on the left

(right) panels. Top panels show the results for CDM only, while the

bottom ones show the same for halos. The left columns of the bottom

panels are missing because we do not perform the analysis for halos at

z = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xii



3.6 The figure shows the signal-to-noise ratio for a possible neutrino-mass

detection using the LP shift with respect to the ΛCDM case. Here we

compare the signal-to-noise for the 50 realizations of the DEMNUni

set with the 50 of the Quijote (i.e. our reference volume). Squares

represent the ratio for the DEMNUni set, light-blue and pink for CDM

and halos respectively. Circles refer to the Quijote set, where we dis-

tinguish the model with Mν = 0.1 eV (dashed line) and the one with

Mν = 0.2 eV (dotted line). Like in the previous figures, CDM is rep-

resented in blue, whereas halos are in red. Finally, the dotted black

horizontal line symbolizes a S/N ratio equal to 1. . . . . . . . . . . . 74

3.7 LP position uncertainty as a function of redshift and volume (i.e. num-

ber of realizations) in the Quijote set. We show the case for the ΛCDM

(left) and the two massive neutrino models (center and right). The blue

surfaces show the 68% uncertainty on the LP in the 2PCF of the CDM,

while the red ones are the equivalent for halos. . . . . . . . . . . . . . 76

4.1 The four panels show the effect of the neutrino mass and of the three

different feedback parameters of the BCM on the matter power spec-

trum at z = 1 (approximately the median redshift of future sur-

veys). All the ratios are taken with respect to a CDM+b power

spectrum model (linear with respect to the linear, non-linear w.r.t.

the non-linear) in a cosmology with minimum-allowed neutrino mass

Mν = 0.056 eV and no baryon feedback. In the top left panel the neu-

trino mass is varied while the ratio in both linear and non-linear regime

are shown. The top right panel shows the effect of increasing logMc, in

the bottom left panel we change the parameter ηb, while in the bottom

right we display how the redshift parameter affects the feedback fitting

function. The gold shaded areas represent cosmic variance for a survey

like in Audren et al. (2013) in a redshift bin of ∆z = 0.1 centered at

z = 1. The grey shaded areas represent the theoretical uncertainty

on the matter power spectrum due to the HALOFIT fitting formulae,

4.14. In all the panels a vertical line at k = 0.5 h/Mpc is drawn, to

mark the maximum k at which our analysis is extended. . . . . . . . 84

xiii



4.2 This picture is the same of fig. 4.1 but here the cosmic shear power

spectrum is shown, with a source distribution like in Audren et al.

(2013), a sky coverage of fsky = 0.375 and with all galaxies in a single

bin, i.e. no tomography has been performed. . . . . . . . . . . . . . . 85

4.3 Contour plots showing the posterior probability distribution for the

three feedback parameters. These are obtained when matter (blue

and green, where we stop at 2 different kmax) and shear (red) spectra

for cosmologies with minimal neutrino mass (Mν = 0.056 eV) and

baryon feedback are fitted on spectra in massive neutrino cosmologies

(Mν = 0.45 eV in this plot) with no baryon feedback. . . . . . . . . . 94

4.4 1-D posterior probability distributions for neutrino mass for all the

cases analysed in Section 4.4.2. The error-bars represent the 68% con-

fidence level on Mν using clustering (blue) and weak lensing (red). The

left columns show the feedback parameters used to generate the mock

data. The top panels show the results when Mν = 0.15 eV, while the

bottom ones do the same for the case Mν = 0.30 eV. The grey shaded

area in the top panels mark the region Mν < 0.056 eV, forbidden by

particle physics experiments. . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 1-D and 2-D posterior PDFs for Mν , logMc and ηb for 2 of the 16

runs described in Sections 4.4.2 whose parameters are displayed in the

plot. The blue contours show the results for clustering, while the red

contours represent the results from the cosmic shear survey. The grey

dashed lines show the “true” values, used to generate the mock data. 98

4.6 Percentage difference on the shear power spectrum C(`) due to an

increasing neutrino mass (from red to blue) or an increasing IA (from

green to yellow) with respect to a model with minimal neutrino mass

and no IA. We assume here a single tomographic bin. . . . . . . . . . 101

4.7 Results obtained from the 16 different runs for a cosmic shear survey

including the IA effect. For clarity we have separated the runs with

same neutrino mass and IA parameters. The black vertical lines rep-

resent the true input value, the error-bars mark the 68% confidence

level for neutrino mass (red) and IA parameter AIA (green). The left

columns report the values of the feedback parameters used to generate

mock data (zc has been set to 2). The grey shaded area is forbidden

by the solar neutrino experiments. . . . . . . . . . . . . . . . . . . . . 103

xiv



4.8 Triangle plot showing 1-D and 2-D posterior PDFs for Mν , logMc, ηb

and AIA for two of the 16 runs described in Sections 4.4.2 and 4.4.3

whose parameters are displayed in the plot. The red and green contours

represent the results from the cosmic shear survey with and without

IA, respectively. The grey dashed lines show the “true” values, used

to generate the mock data. . . . . . . . . . . . . . . . . . . . . . . . . 103

4.9 This picture shows the degeneracy between neutrino mass and the IA

parameter for the 16 different cases analysed in Section 4.4.3. The

top plots have Mν = 0.15 eV, while the bottom ones have Mν = 0.3

eV; odd columns have AIA = 1.3, even columns have AIA = −1.3 (the

dashed lines help the view in marking the true value). The parameters

of the set are written inside each panel. The contour lines shown

are 68% and 95% confidence level, while the dashed black lines show

the true values for the parameters. It is clearly visible that in some

cases the degeneracy between the two parameters is totally absent, but

even where is present it will be likely not to bias the measurement on

neutrino mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 Relative position of the Milky Way, Andromeda Galaxy and the Virgo

Cluster. The size of the dots matches the virial radius of the object.

The grey shaded plane represents the plane of the Milky Way. . . . . 121

5.2 The colormap shows the potential generated by an exponential disk.

The red lines denote isocontours for this potential, while the black

ones denote the isocontours for the potential generated by a point-like

source with the same mass. At R/Rs ∼ z/Rs ∼ 25 the difference

between the spherical and cylindrical potentials is smaller than 1%. . 123

5.3 For each neutrino mass state, we plot the ratio nν/nν,0 at the Earth’s

position as a function of the neutrino mass mν . We consider contri-

butions to the gravitational potential from the Galactic DM halo (top

panel: NFW profile, bottom panel: Einasto profile), from baryons in the

Galaxy, from the Virgo cluster and from the Andromeda galaxy. We

also compare with earlier studies (Ringwald & Wong (2004); de Salas

et al. (2017); Zhang & Zhang (2018)). . . . . . . . . . . . . . . . . . 125

5.4 Clustering factor as a function of the earliest redshift zback at which

neutrino trajectories are integrated, for different values of the neutrino

mass and different astrophysical configurations. . . . . . . . . . . . . 127



xvi



List of Tables

1.1 Fiducial values for the ΛCDM cosmology used in this and in the fol-

lowing Chapter. When we add massive neutrinos in Chapter 2, we will

keep Ωm and Ωb fixed, so that an increase in Mν will correspond to a

decrease in Ωc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Different specifics of the two simulation sets employed in this work. . 60

3.2 Average number of halos per realization, per snapshot and simulation

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 The table summarizes the results for the LP (including the 0.5% cor-

rection) for the DEMNUni (left) and the Quijote (right) simulations.

We show the LP position with 1-σ uncertainty. . . . . . . . . . . . . . 70

4.1 Best-fit values of the baryon parameters obtained from the analysis

of Section 4.4.1, where we fitted spectra with baryonic features onto

spectra containing massive neutrinos. We also report the difference

in the reduced chi-squared ∆χ2
red with respect to the one obtained

using the “true” model. Mc is in units of M�/h while the errors

or lower limits represent the 68% confidence level. The priors are

logMc [M�/h] ∈ [12, 30], ηb ∈ [0, 30], zc ∈ [0, 30]. . . . . . . . . . . . 94

4.2 Best-fit values and 68% confidence level intervals for the parameters

obtained from the power spectrum, P (k), as well as from the cosmic

shear, C(`), analysis. The mark 7 means that such parameter is not

constrained at all. See Section 4.4.2 for details. . . . . . . . . . . . . 96

4.3 This table shows the 68% confidence level intervals for the parameters

obtained from the analysis of cosmic shear power spectra to which the

IA contribution has been added. See Section 4.4.3 for details. . . . . . 102

xvii



5.1 DM density parameters for the Milky Way at z = 0, obtained by fitting

the data from Pato & Iocco (2015), following the same procedure as in

de Salas et al. (2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Density profile parameters for the baryonic components at z = 0. We

also provide the total mass for each component. All the components

have a profile described by eq. 5.18, except for the bulge, which fol-

lows a de Vaucouleurs profile (eq. 5.17). The scale radii and heights

are taken from Misiriotis et al. (2006), as specified in the main text.

The redshift evolution of the total mass is found following the N -body

simulation results of Marinacci et al. (2014), while we assume that Rs

and zs do not evolve in time. . . . . . . . . . . . . . . . . . . . . . . 118

5.3 DM density parameters for the Andromeda galaxy and the Virgo clus-

ter at z = 0. The parameters for Virgo are taken from Fouque et al.

(2001), and for Andromeda from Kafle et al. (2018). . . . . . . . . . 121

5.4 Characteristics of the grid used for the derivative of the contributions

to the potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.1 The Table shows the values of the parameters used by HMcode (Mead

et al. (2015, 2016)) to fit the matter power spectrum from DM only

simulations in ΛCDM cosmologies. In this work we typically use these

parameters for the non-linear power spectrum. . . . . . . . . . . . . . 143

xviii



1
Introduction: the standard cosmological

model

If you wish to make an apple pie
from scratch, you must first invent
the Universe.

Carl Sagan

We became self-aware only to
realize this story is not about us.

1.1 A historical background to motivate this work

Since the dawn of its existence, mankind has tried to find explanations for celestial

phenomena. While in ancient times astronomy was tightly related to philosophy and

religion, it was only around the 16-th century that a scientific approach started to be

used. Observations by Brahe, Kepler and Galileo and the development of the theory

of gravitation by Newton represent some of the fundamental milestones of this process

of transformation.

We can argue that the birth of modern cosmology (from the ancient Greek κóσµoς,

“order”, and λóγoς, “study”) dates back in the 1920s after the “Great Debate” about
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the nature of the spiral nebulae took place. The discovery, by Edwin Hubble in 1924,

that the Andromeda nebula was an actual galaxy proved that the Universe was much

wider than it was thought back then and that the Milky Way was just one of the

existing billions of galaxies.

On the theoretical side, Albert Einstein’s new theory of gravity, General Relativity

(GR), had successfully been tested against observations of gravitational lensing and

the precession of the orbit of Mercury. These combined efforts, together with the

striking discovery of the expansion of the Universe (Hubble (1929)) paved the way to

the development of a completely new branch of physics.

In the following decades, the idea that the Universe had evolved from an initial state

of high energy and temperature started to take hold in the scientific community. Little

by little, all the pieces of the puzzle came together: in the late 1940s Big Bang Nucle-

osynthesis (BBN) was proposed as the mechanism that created the lightest elements

in the first 3 minutes (Alpher et al. (1948)); the discovery of the Cosmic Microwave

Background (CMB, Penzias & Wilson (1965)) confirmed the key prediction of a relic

radiation from the Big Bang; rotation curves of galaxies and cluster dynamics (see

e.g. Clowe et al. (2006)) indirectly proved the existence of dark matter (DM) as the

dominating form of matter in the Universe and as the main driver for galaxy forma-

tion; the theory of inflation (first proposed by Guth (1981)) explained, among other

things, how the small density perturbations that would give rise to galaxies were

created in the primordial Universe; finally, the unexpected discovery of the acceler-

ated expansion of the Universe through the observation of distant type-Ia supernovae

(SNIa, Perlmutter et al. (1999); Riess et al. (1998)) unveiled how the dominant form

of energy that permeates our Universe is completely unknown.

All these contributions were crucial to build the standard model of cosmology, the

ΛCDM paradigm. Under the assumption of homogeneity and isotropy, the Universe

is ruled by Einstein’s field equations for a Friedmann-Lemâıtre-Robertson-Walker

(FLRW) metric. The background expansion is driven by the so-called density param-

eters Ωi, i.e. the energy densities of the different species of particles in the Universe.

Constraints on these cosmological parameters have extraordinarily improved in the

last two decades, especially thanks to the latest CMB experiments (Hinshaw et al.

(2013); Planck Collaboration et al. (2018)). Thanks to these probes, we know that

∼ 70% of the energy density of the Universe is in the form of a cosmological constant

(Λ) associated to dark energy (DE). Ordinary matter (which is referred to as “bary-

onic matter” or simply “baryons” in cosmology) only makes up ∼ 5% of the energy

density, while the remaining ∼ 25% is made by DM. This component is supposed to
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be massive enough (i.e. cold, CDM) and collisionless in order to be able to form the

galaxies and the large-scale structures that we observe today. However, warm dark

matter (WDM) models, in which DM was quasi-relativistic at decoupling but behaves

as CDM today, have become very popular in the last decades (see e.g. Bode et al.

(2001) for a review).

A little fraction of energy density today is carried by photons and neutrinos. The exis-

tence of a relic neutrino background (Cosmic Neutrino Background, CνB), analogous

to the CMB and with density and temperature tightly related to it, is a key prediction

of the Big Bang model which has not been detected yet. While for the photons the

energy density is well constrained by CMB temperature (Planck Collaboration et al.

(2018)) through blackbody radiation laws, for neutrinos the situation is much more

subtle. According to the Standard Model of particle physics, neutrinos are massless

particles which come in three different species (flavors). If this were the case, from

a cosmological point of view they would be indistinguishable from photons, adding

a contribution to their energy density of about ∼ 70%. However, the detection of

neutrino oscillations showed that neutrinos do in fact possess a mass. These exper-

iments were only able to constrain the difference of square masses between different

species, leading to a lower limit of the total neutrino mass Mν =
∑

imν,i of ≈ 0.06

eV assuming normal hierarchy (NH) and ≈ 0.1 eV assuming inverted hierarchy (IH)

(see e.g. Lesgourgues & Pastor (2006)).

On the other hand, cosmology has the power to constrain Mν providing upper lim-

its. As we will see more in detail in Chapter 2, neutrinos decouple in the very early

Universe from the baryon-photon plasma, when they are still relativistic. The high

thermal velocity to which they are subject prevents them from clustering on scales

smaller than the free-streaming length λfs. The net result is a suppression of the

growth of density fluctuations at small scales, which can in principle be detected by

CMB or large-scale structure experiments. In fact, cosmology has so far been able to

place either upper limits (e.g. Giusarma et al. (2016)) or show marginal preference

for a non-vanishing neutrino mass (Beutler et al. (2014); Battye & Moss (2014); Di

Valentino et al. (2017)). While the latest “large-scale-structure-only” experiments

including weak lensing, SNIa and Baryon Acoustic Oscillations (BAOs) have deter-

mined Mν < 0.26 eV at 95% confidence level (Abbott et al. (2018)), the most stringent

constraint on Mν is currently represented by the combination of CMB (Planck Col-

laboration et al. (2016)) with BOSS Lyman-α forest data, providing Mν < 0.12 eV

at 95% confidence level (Palanque-Delabrouille et al. (2015a)).
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The number of relativistic degrees of freedom, i.e. the number of active neutri-

nos corrected for non-instantaneous decoupling, has also been well constrained to

Neff = 2.99 ± 0.17 by Planck Collaboration et al. (2018), in agreement with the

standard model prediction of 3.046 (Mangano et al. (2005)). Actually, the measured

value of Neff could in principle be due to any relativistic species in the primordial

Universe, such as axions, gravitinos, scalar fields oscillating in a quartic potential,

(self-)interacting relics and so on. All these exotic species have specific values for

their effective sound speed (c2
eff = δP/δρ) and viscosity speed (c2

vis, which controls

the amount of anisotropic stress), see e.g. Trotta & Melchiorri (2005); Archidia-

cono et al. (2011). The case of standard active neutrinos, in particular, requires

c2
eff = 1/3 and c2

vis = 1/3 (in units where c = 1). These phenomenological parameters

were constrained by Planck Collaboration et al. (2016) to c2
vis = 0.331 ± 0.037 and

c2
eff = 0.3242±0.0059, i.e. consistent with the expected values at ∼ 0.1 σ and ∼ 1.5 σ,

respectively.

As a final relevant point, despite not having an absolute mass measurement yet, the

narrow gap between the minimum mass allowed by particle physics and the cosmo-

logical constraints is sufficient to mildly favor NH over IH (Hannestad & Schwetz

(2016); Gerbino et al. (2017); Vagnozzi et al. (2017); Capozzi et al. (2017)). There-

fore, cosmological observations are fundamental tools not only for cosmology itself,

but also for particle physics.

The next few years will see a flourishing of experiments that will be devoted to

large-scale structure measurements: while the Dark Energy Survey1 (DES) is already

ongoing, Euclid2, the Large Synoptic Survey Telescope (LSST)3, the Dark Energy

Spectroscopic Instrument4 (DESI) and the Square Kilometer Array5 (SKA) will soon

start operating.

These ambitious projects will likely be able to measure neutrino mass for the very

first time (e.g. Euclid Collaboration et al. (2019a); Zhan & Tyson (2018); Yohana

et al. (2019); Sprenger et al. (2019)). Therefore, a detailed study of the effect of

neutrino mass on cosmological observables, along with a careful analysis of the sys-

tematics, nuisances and biases that affect measurements and theoretical predictions

is of primary importance in order to obtain accurate results: in summary, this has

been the twofold goal of my work as a Ph.D. student, summarized in this thesis.

1https://www.darkenergysurvey.org/
2https://www.euclid-ec.org/
3https://www.lsst.org/
4http://desi.lbl.gov/
5https://www.skatelescope.org/
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The thesis is structured in a way that allows first to familiarize with the standard

ΛCDM model without massive neutrinos (Chapter 1), by defining the main quantities

that will be employed. In Chapter 2, we dig into the details of massive neutrino

cosmology, describing how much the picture changes with respect to the pure ΛCDM

paradigm and quantifying the impact that neutrino mass has on both background

quantities and large-scale structure observables. The following three Chapters are

dedicated to describe the actual research that I have been carrying out during my

Ph.D., based on as many papers that have been published on or submitted to refereed

journals. These Chapters are sorted by the degree of non-linearity of the physical

phenomena described in each of them, starting from the most linear: in Chapter

3 we investigate the impact of Mν on the linear point of the two-point correlation

function (Parimbelli et al. (2020)); in Chapter 4 we carefully test whether baryonic

processes will bias the measurements of neutrino mass in future galaxy clustering

and cosmic shear surveys (Parimbelli et al. (2019)); in Chapter 5 we extend previous

works (Ringwald & Wong (2004); Zhang & Zhang (2018); de Salas & Pastor (2016))

on gravitational neutrino clustering in the Milky Way in order to predict a possible

future direct detection of the cosmic neutrino background (Mertsch et al. (2020)).

The latter is accompanied by Appendix B, where we show how we solved the Poisson

equation to compute neutrino clustering. The final Chapter of the thesis (Chapter

6) draws the conclusions for the single papers and eventually frames them in the big

picture, summarizing which are the possibilities at the state-of-the-art and exploring

future prospects for massive neutrino cosmology and beyond.

1.2 The homogeneous Universe

Since the fundamental interaction responsible for the formation of structures we ob-

serve today in the Universe is gravity, the correct theory to use to describe it is

Einstein’s General Relativity (GR). In this Section we briefly show the steps that

led to the building of the standard cosmological model. Then, we will define all the

fundamental quantities we will deal with in this work, including ages, distances and

the main cosmological parameters.

1.2.1 From the cosmological principle to Friedmann equations

GR describes gravity as curvature of space-time through Einstein’s field equations:

Rµν −
1

2
gµνR + gµνΛ =

8πG

c4
Tµν . (1.1)
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The left hand side is fully determined by the metric tensor gµν , which characterizes

the properties of space-time. The Ricci tensor Rµν and the Ricci scalar R = gµνRµν

are a measure of how the geometry of space-time affects distances, while Λ is the

cosmological constant. On the right hand side the stress-energy tensor Tµν contains

energy densities and pressures as responsible for the space-time curvature.

The standard cosmological model bases itself on the fundamental observation (also

supported by theoretical arguments) called the cosmological principle, which states:

The Universe is homogeneous and isotropic on large enough scales.

It can be shown (Weinberg (1972)) that the only space-time metric that satisfies these

requirements is the Friedmann-Lemâıtre-Robertson-Walker (FLRW) one:

ds2 = c2 dt2 − a2(t)

[
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θ dϕ2

)]
, (1.2)

where t is the cosmic time, a(t) is the scale factor which rules the expansion of the

Universe and relates the coordinate labels (r, θ, ϕ) to physical distances and K is a

constant that can take the values +1, 0,−1 and that describes the curvature of space.

Substituting eq. 1.2 into eq. 1.1 and assuming that the stress-energy tensor is gen-

erated by a uniform ideal fluid, one obtains the so-called Friedmann and acceleration

equations :

(
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λc2

3
(1.3)

ä

a
= −4πG

3

(
ρ+ 3

P

c2

)
+

Λc2

3
, (1.4)

where ρ =
∑

i ρi is the sum of the mass densities for each species and P =
∑

i Pi is the

total pressure. The typical assumption is that for each species Pi = wiρic
2, where wi

is called parameter of state. For relativistic particles, such as photons and neutrinos
6 wγ = wν = 1/3 while for cold dark matter (CDM) and baryons wc = wb ≈ 0.

We define the Hubble parameter H(t) as the rate of change of scale factor in time:

H(t) =
ȧ(t)

a(t)
. (1.5)

Its value at present time is called the Hubble constant H0 and it is often used in its

rescaled version h = H0/ (100 km s−1 Mpc−1).

6In this Chapter we only consider the standard picture where neutrinos are massless. The effect
of neutrino mass on these quantities will be examined in Chapter 2.
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Another way to parametrize time is using redshift : taking advantage of the fact that

photons travel on null geodesics, redshift and the scale factor are related by:

a =
1

1 + z
, (1.6)

so that a0 ≡ a(t0) = 1 at present time. In the following, we will use cosmic time,

scale factor and redshift as the time variable interchangeably.

1.2.2 Density parameters

Eq. 1.3 can be recast in a way that is of easier comprehension by introducing the

density parameters. First of all, the left hand side is just H2(t). Then, it can be

noticed that the cosmological constant can be seen as a component with “mass”

density ρΛ = Λc2/(8πG) and negative pressure PΛ = −ρΛc
2, i.e. wΛ = −1. We define

also the critical density at a time t to be the density for which K = 0, namely:

ρcrit(t) =
3H2(t)

8πG
. (1.7)

and the density parameter for the i-th specie:

Ωi(t) =
ρi(t)

ρcrit(t)
. (1.8)

We can define as well a density parameter for curvature as:

ΩK(t) = − Kc2

H2(t)a2(t)
. (1.9)

From now on, Ωi will denote the density parameter for the i-th species evaluated at

present time, while we will refer to the time-dependent quantity only if it is explicitly

written in the text.

Combining all these quantities we end up with:

H2(z) = H2
0

∑

i

Ωi (1 + z)3(1+wi), (1.10)

where we also included curvature as a component with wK = −1/3.
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1.2.3 Distances

Defining a distance for an expanding background is a somewhat subtle task. To

measure redshift, we use electromagnetic radiation, for which ds = 0. Plugging this

into eq. 1.2 and assuming a radial trajectory ( dθ = dϕ = 0), after few steps one

finds:

χ(z) =

∫ z

0

c dx

H(x)
, (1.11)

where χ is the comoving distance whose relation to r depends on the value of the

curvature parameter K:

χ =





sin−1 r if K = +1

r if K = 0

sinh−1 r if K = −1

. (1.12)

The proper distance is instead given by Dp(t) = a(t)χ(t). Unfortunately, none of them

is measurable. What we can observe, depending on whether we measure a luminosity

flux or an object of a given angular size, are the luminosity distance DL and or the

angular-diameter distance DA, respectively, which in a flat Universe (K = 0) can be

written as:

DL(z) = χ(z) (1 + z) (1.13)

DA(z) =
χ(z)

1 + z
. (1.14)

A final distance, useful in BAO analyses, is the isotropic volume distance, defined as:

DV (z) =

[
(1 + z)2 D2

A(z)
cz

H(z)

]1/3

. (1.15)

1.2.4 A standard model for cosmology

With the quantities defined above, cosmologists have built a successful model that

up to now is in excellent agreement with observational data. In this paradigm, called

ΛCDM, the Universe is filled, besides baryons, with CDM, which is responsible for

the growth of cosmic structures, and a dark energy (DE) component corresponding to

Einstein’s cosmological constant that accelerates the expansion of the Universe itself.

The main source of cosmological constraints in the last decades has surely been the

CMB: while the COBE satellite (Smoot et al. (1992)) first measured anisotropies in
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the background radiation and WMAP (Bennett et al. (2013)) first detected its polar-

ization, the Planck satellite extended these measurements to very small angular scales

with unprecedented accuracy. The tightest constraints on the cosmological parame-

ters currently come from the third data release of the latter (Planck Collaboration

et al. (2018)), combined with large-scale structure surveys such as BOSS/SDSS map-

ping galaxies in the near Universe (Alam et al. (2017), z < 0.7) and constraints on

weak lensing coming from the Dark Energy Survey (Abbott et al. (2018, 2019)).

These sets of data show that our Universe is described by a flat geometry (ΩK =

0) as consequence of a nearly-exponential expansion phase the Universe underwent

when it was ∼ 10−36 − 10−34 s old. In this phase, called inflation, small density

perturbations were generated by a stochastic quantum mechanism. These would later

become the cradles where galaxies are born. The lightest elements were assembled in

the first 3 minutes in the Big Bang Nucleosynthesis (BBN). The baryon content of the

Universe is tightly constrained by deuterium abundance data by Cooke et al. (2018)

and CMB to Ωbh
2 = 0.02242 ± 0.00014. At z ∼ 1100 the CMB was released soon

after photon-electron decoupling and the consequent formation of neutral hydrogen

atoms. The radiation content of the Universe is fixed by the CMB temperature

and its density parameter is pretty negligible today, Ωγh
2 ≈ 2.45 × 10−5. Neutrino

density is also in tight relation with the photon one, with Ων ≈ 0.68 Ωγ, assuming

three species with zero mass. Meanwhile, perturbations in CDM kept growing under

influence of gravity, giving rise first to galaxies and then to clusters and super-clusters.

The CDM density parameter has been measured to be Ωch
2 = 0.11933 ± 0.00091

from Planck. The remaining energy density is in form of DE: while in principle

it can be any component which accelerates the expansion of the Universe, with a

redshift-dependent parameter of state for instance, so far no significant deviation

from Einstein’s cosmological constant has been detected. The dimensionless Hubble

parameter is constrained by Planck to h = 0.674 ± 0.005 and it is currently subject

of several studies (see e.g. Guo et al. (2019); Desmond et al. (2019)) concerning the

tensions between this value and the one obtained by observations of distant SNIa, the

most recent result being 4.4σ away (Riess et al. (2019)). See Bernal et al. (2016) and

Knox & Millea (2020) for reviews.

Another tension worth mentioning concerns the mild discrepancy between the ampli-

tude of density fluctuations on spheres of radius 8 Mpc/h (σ8, see Section 1.4.3) as

measured by CMB (Planck Collaboration et al. (2018)) and the slightly smaller one

obtained from weak lensing experiments (Hildebrandt et al. (2017); Köhlinger et al.

(2017); Abbott et al. (2018, 2019); Joudaki et al. (2020)).
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In addition to this, the ΛCDM model clearly suffers from some limitations at sub-

galactic scales. In particular, the dwarf galaxies predicted by N -body simulations

largely outnumber the observed ones (missing satellite problem, see Klypin et al.

(1999); Moore et al. (1999)); the innermost DM profiles seem to be much more diverse

(diversity problem, Oman et al. (2015); Tulin & Yu (2018)) and steeper than the

observed ones (cusp-core problem, Donato et al. (2009)); finally, sub-halos in principle

massive enough to be able to ignite galaxy formation remain unseen (too-big-to-fail

problem, Boylan-Kolchin et al. (2012)).

1.3 The perturbed Universe

While the cosmological principle holds true on large enough scales (say & 100 Mpc),

on smaller scales we observe a considerably inhomogeneous Universe. The large-scale

structures we observe today are the result of the secular growth of small density per-

turbations generated stochastically in the very early stages of the life of the Universe.

When the CMB was released at z ' 1100, density fluctuations were of the order of

δρ/ρ ∼ δT/T ∼ 10−5, while today galaxy clusters and galaxies themselves can reach

densities of order 103 and 106 times larger than the average background density, re-

spectively. How density perturbations grew under the influence of gravity to form

cosmic structures is therefore a fundamental question that needs to be answered.

In this Section we derive the equations that rule the time evolution of density per-

turbations. We then solve them assuming that these perturbations are small, i.e. we

perform a linear perturbation theory, and mention some ways to extend the predic-

tions to the non-linear regime.

1.3.1 Equations of motion

We assume that some initial perturbations with respect to the homogeneous Universe

are generated by some physical mechanism (we will see it more in detail in Section

1.4.2). It is useful to use the following notation for the quantities. The comoving

coordinate x is related to the proper one r = ax, while the proper velocity u = dr
dt
≡ ṙ

can be written as u = ȧx + v = Hax + v, where v = aẋ is called peculiar velocity.

We therefore denote ∇ ≡ ∇x = a∇r. We also make the assumption, for the time

being, that these perturbations are non-relativistic and can be treated with Newtonian

dynamics.
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The most important quantity that we will deal with in this work is the density fluc-

tuation, defined as:

δ(x, t) =
ρ(x, t)− ρ̄(t)

ρ̄(t)
, (1.16)

where ρ̄ is the average cosmic density at time t.

The equation that describes the evolution of the phase-space distribution f of a

particle species of mass m is the Boltzmann equation, which can be written simply:

df

dt
=

(
∂f

∂t

)

c

, (1.17)

where f is normalized in such a way that dN = f(x,p, t) d3x d3p and
(
∂f
∂t

)
c

describes

variations in f due to collisions among particles. Expanding the total derivative with

respect to cosmic time in comoving coordinates and using the Newtonian approxima-

tion we obtain the Vlasov equation:

∂f

∂t
+

p

ma2
· ∇f −m∇Φ · ∂f

∂p
=

(
∂f

∂t

)

c

, (1.18)

where Φ is a perturbation in the gravitational potential that satisfies Poisson equation:

∇2Φ = 4πGρ̄a2δ. (1.19)

Eq.1.18 is of difficult solution, but one can expand it in its p moments by defining,

for a certain quantity Q:

〈Q〉 (x, t) =
1

n

∫
d3p f(x,p, t) Q, (1.20)

where

n =

∫
d3p f(x,p, t) (1.21)

is the comoving number density of particles at x. In this case, the fluctuation density

field is related to number density by n = ρ̄a3 1+δ
m

. Multiplying eq. 1.18 by Q and

integrating over p one obtains:

∂

∂t
[n 〈Q〉] +

1

ma2
∇ · [n 〈Qp〉] +mn∇Φ ·

〈
∂Q

∂p

〉
= 0, (1.22)

where the right hand side vanishes sinceQ is conserved in a collision. The conservation

of mass can be obtained by setting Q = m (continuity equation):

∂δ

∂t
+

1

a

∑

j

∂

∂xj
[(1 + δ) 〈vj〉] = 0, (1.23)
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while the conservation of momentum (Euler’s equation) can be found by setting Q =

vi and manipulating a little the result:

∂ 〈vi〉
∂t

+
ȧ

a
〈vi〉+

1

a

∑

j

〈vj〉
∂ 〈vi〉
∂xj

= −1

a

∂Φ

∂xi
− 1

a(1 + δ)

∑

j

∂

∂xj
[(1 + δ)σij], (1.24)

where σij = 〈vivj〉 − 〈vi〉 〈vj〉 is proportional to the stress tensor and therefore plays

the role of pressure in a collisional fluid or of velocity stress in a collisionless one.

In principle, one could continue with an infinite hierarchy of equations, where each

moment depends on the higher order one. However, one can truncate this series by

making some assumptions. Assuming a monoatomic perfect gas with temperature T ,

entropy per unit mass S and a sound speed c2
s = dP

dρ
, the last sum of eq. 1.24 becomes∑

j c
2
s
∂δ
∂xj

+ 2T
3

(1 + δ) ∂S
∂xj

(see e.g. Mo et al. (2010)). As we will see in Section 1.4.2,

initial isoentropic perturbations are a natural prediction of inflation. Therefore we

will consider only the case where S is a constant.

1.3.2 Growth of perturbations

The continuity equation 1.23, Euler’s equation 1.24 and the Poisson equation 1.19 are

the three starting points from which perturbation theory (PT) is developed. In linear

PT, only the lowest order terms in δ and v are kept. Furthermore, it is simpler to write

the equations in Fourier space where gradients and Laplacians are substituted by a

factor ik and −k2 respectively. The fundamental equation of perturbation evolution

in linear PT is:
∂2δk
∂t2

+ 2
ȧ

a

∂δk
∂t
−
(

4πGρ̄− k2c2
s

a2

)
δk = 0. (1.25)

It is easy to notice that in linear PT each scale grows independently as there are no

couplings between different k. The growth of density perturbations therefore can be

compared to a damped harmonic oscillator, where the friction term is carried by the

Hubble expansion and the source term is a competition between gravity and pressure

forces. In the ΛCDM model, the dominant component of matter is CDM, which can

be assumed to be a collisionless perfect fluid. We can therefore neglect the pressure

term in eq. 1.25. It can be shown that, neglecting radiation in the Hubble term, the

two independent solutions are a decaying mode (∝ H) which can safely be ignored

at late times and a growing mode given by:

D1(z) ∝ H(z)

∫ ∞

z

dx
1 + x

E3(x)
, (1.26)
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where E(z) = H(z)/H0. This particular solution is tends to (1+z)−1 at high redshift,

where the Universe is close to a Einstein-de Sitter one (EdS, with Ωm = 1).

By using eq. 1.25 with different assumptions on the epoch, fluids and couplings

among them, we can reconstruct the history of growth of fluctuations in linear PT.

During radiation domination, CDM fluctuations inside the horizon are frozen due to

the Meszaros effect (Meszaros (1974)), while they start growing only once entered in

the matter dominated era (z ∼ 3500). On the other hand, baryons are coupled to

photons via Compton scattering and they produce acoustic waves due to the com-

petition between self-gravity and radiation pressure. These waves are called Baryon

Acoustic Oscillations (BAO) and are today observed both in CMB and galaxy sur-

veys. In this phase, a fraction of photons manages anyway to escape high-density

regions due to the non-vanishing mean free path and since acoustic waves are sup-

ported by photon pressure, these are damped in this process known as Silk damping

(Silk (1968)). As a result, at decoupling, perturbations in baryons are much smaller

than the ones in CDM. Baryons, having lost the radiation pressure support, start

then falling into CDM potential wells. In exchange, due to the mutual gravitational

interaction, baryons leave the imprint of the BAOs also on the CDM distribution. It

is important to notice that in a Universe without CDM, only baryonic fluctuations

with a mass & 1013 M�/h would survive Silk damping. Consequently, the only way

in which galaxies could have formed is through fragmentation of non-damped struc-

tures, in a top-down scenario. This requires anyway initial perturbations in baryons

to be too large to match observations of the CMB. On the contrary, observations have

shown how cosmic structures become more and more massive at low redshift: this

bottom-up scenario represents a strong evidence of the existence of DM as the driver

for structure formation.

1.3.3 Non-linear growth: PT vs. N-body simulations

After baryons are dragged into CDM overdensities, perturbations keep growing as

just exposed until eventually the condition δ � 1 is not valid anymore and linear

theory breaks down. If one wants to stick to PT, there are several choices that can

be made. For this Section, we refer to Bernardeau et al. (2002)7. One solution could

be to use higher-order standard perturbation theory (SPT), where the density field

is expanded in series δk(t) = δ
(1)
k (t) + δ

(2)
k (t) + ... and at each order the solution can

7Notice that in Bernardeau et al. (2002) a different normalization of the Fourier transform is
used, so that many quantities differ by a factor (2π)3.
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be written as:

δ
(n)
k (t) =

∫
d3q1

(2π)3
...

∫
d3qn

(2π)3
δD(k− q1...n) Fn(q1, ...,qn) δ(1)

q1
(t)...δ(1)

qn (t), (1.27)

where Fn is a kernel that describes couplings between different modes, q1...n ≡
q1 + ...+ qn and the Dirac delta ensures conservation of momentum. Notice that

while this solution is explicitly derived assuming an EdS Universe, the dependence of

the kernels on cosmological parameters is very weak, so that eq. 1.27 is approximately

valid at low redshift in a ΛCDM model.

A different approach is Lagrangian perturbation theory (LPT), where instead of

studying the dynamics of the density field, trajectory of particles are followed. In

this picture, we are interested in the displacement field Ψ(q) that maps the initial

position q into the final one x, i.e. x(t) = q+Ψ(q, t). The relation between the latter

and the density field can be written as:

1 + δ(x) =
1

det
(
δij + ∂Ψi

∂qj

) , (1.28)

where the displacement field is expanded in series, namely: Ψ(q, t) = Ψ(1)(q, t) +

Ψ(2)(q, t) + ...

However, these two PT suffers from some problems. The first is related to the fact that

these are not perturbation theories as intended in the common sense. In fact, while

typical PTs expand the calculation around a small parameter, here we expand over δ

which is not a parameter. Therefore we expect the theory to break down at scales and

redshifts where δ ∼ 1. For instance, at z = 0 the inaccuracy of SPT can reach 20%

at k ≈ 0.2 h/Mpc (Scoccimarro (2004)) when computing the power spectrum (see

Section 1.4.1). On the other hand, LPT breaks down when shell crossing happens,

i.e. when two fluid elements with different initial q end up at the same final position

x. In that case, the Jacobian goes to zero and the dynamics cannot be described in

terms of mapping anymore.

The second problem concerns the fact that in SPT, at any order, the contributions

are not a small correction to the previous ones and some terms even turn out to be

negative: this leads to large cancellations at all scales both in the infrared and in

the ultraviolet, which must be dealt with. An alternative is to use Renormalized PT

(RPT, Crocce & Scoccimarro (2006)), where the linear propagator is resummed so

that each order only has a small range of scales (smaller for increasing order) where

it carries a relevant contribution.
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A completely different approach is to follow the dynamics of a large number of par-

ticles through N -body simulations. In typical N -body simulations, particles on a

cubic grid are initially displaced using first-order or second-order LPT (the former

is known as Zel’dovich approximation, the latter often denoted as 2LPT) and then

evolved according to Newton’s second law: this equation is solved accurately up to

very small scales. Different approaches can be adopted here also. The fastest one in

terms of time is to assign each particle a cell in a grid and compute potential and

forces on the grid. This procedure is known as particle mesh. On the other hand,

tree methods divide space into cubic cells, each of which is recursively divided into

smaller ones until each cell is occupied by one particle only. Forces are then calcu-

lated between the different cells. There are, finally, also codes which combine the

two approaches (TreePM ), where the force is computed on a grid above a certain

distance and with the tree algorithm below it. Clear examples of these three different

methods are RAMSES (Teyssier (2002)), PDKGRAV (Stadel (2001)) and GADGET

(Springel (2005)), respectively. A detailed study of these different codes (Schneider

et al. (2016)), has underlined how the three different prescriptions agree within ∼ 3%

at z = 0 for k = 10 h/Mpc at the power spectrum level (see Section 1.4.4). Despite

remarkable, this result is not enough to achieve the desired goals for future surveys,

for which a 1% accuracy is required.

1.4 Statistical tools for cosmology

The current explanation of the large-scale structure is that the present matter distri-

bution is the result of the growth of small fluctuations caused by a stochastic process

in the very early Universe (inflation). Since we do not have observational access to

these, i.e. we cannot observe the points where the initial overdensities were, and since

the evolution time-scale is way longer than the one which we can make observations,

we cannot predict deterministically where galaxies will be born. In other words, we

can only test our Universe in a statistical fashion, considering it as one of the infinite

possible stochastic realizations of itself. The statistical prediction we make depend

on the statistical properties of the primordial perturbations.

In this Section we first briefly describe random fields, introducing the notions of sta-

tistical homogeneity and isotropy. Then, we define the main statistical quantities that

we can predict, paying particular attention to the two-point statistics, i.e. the power

spectrum or the two-point correlation function. Finally, we describe in detail the
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shape of the latter, emphasizing of the different physical processes that are involved

in the different ranges of scales.

1.4.1 Random fields and two-point statistics

A random field is a quantity φ(x, t) which has its own probability distribution function

P(φ). Given a function f(φ), its expectation value is given by:

〈f(φ)〉 =

∫
dφ P(φ) f(φ). (1.29)

In the following, we will mostly consider the density fluctuation field (i.e. f(φ) = δ).

Most cosmological models, including ΛCDM, predict that δ is statistically homoge-

neous and isotropic. The former means that the probability distribution function P(δ)

and its moments are invariant for translations of the coordinates in space; the latter

means that the probability distribution function is invariant under spatial rotations.

The distribution is completely known when all its moments are known.

The lowest order statistics than can be built out of the fluctuation density field is the

two-point one. The two-point correlation function (2PCF), representing the excess

probability of finding two objects (galaxies, clusters...) at a given separation r with

respect to a random distribution, can be defined as:

ξ(r) = 〈δ(x) δ(x + r)〉 , (1.30)

where ξ only depends on r = |r| due to statistical isotropy and the mean is intended

as ensemble average, i.e. a summation over all possible realizations of the Universe.

Practically, when dealing with observations, we cannot perform such an average. In

this case the ergodic hypothesis is assumed (Peebles (1973)): the finite part of the

universe accessible to observations is a fair sample of the whole, so that the ensemble

average can be replaced by an integration over the observed volume.

If we wanted to compute the 2PCF in Fourier space we should write:

〈δkδk′〉 =

∫
d3x d3r 〈δ(x) δ(x + r)〉 e−i[k·x+k′·(x+r)]

=

∫
d3r ξ(r) eik·r

∫
d3x ei(k+k′)·x

= (2π)3δD(k + k′)P (k), (1.31)

so that we have defined the power spectrum P (k) as:

P (k) =
〈
|δk|2

〉
, (1.32)
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and found that it constitutes a Fourier transform pair with the 2PCF, namely:

P (k) =

∫ ∞

0

dr 4πr2ξ(r) j0(kr), ξ(r) =

∫ ∞

0

dk k2

2π2
P (k) j0(kr), (1.33)

where j0(x) = sinx/x is the 0-th order spherical Bessel function.

An important remark needs to be explained about two-point statistics. The power

spectrum and the 2PCF are the lowest-order non-vanishing statistics of a random

field with zero mean (like for instance δ). In general, one can combine 3 or more

random fields and build higher order statistics, whose expressions become more and

more difficult to deal with. But in the special case where the random field follows

a Gaussian distribution, i.e. P (δ(x)) ∝ exp [−δ2(x)/(2σ2)], the two-point statistics

is the only non-vanishing one, as all higher central moments of the distribution are

identically zero. Therefore a Gaussian random field is fully characterized by its power

spectrum or its 2PCF. This is of outstanding importance, since as we will shortly see

(Section 1.4.2), inflationary models typically predict Gaussian initial conditions for

the density field: if this is the case, as long as the growth of perturbations is in the

linear regime, the density field remains Gaussian and the power spectrum contains

all the relevant information about large-scale structure.

There are a couple more of convenient definitions that must be introduced for the

linear power spectrum, i.e. the power spectrum computed assuming that the density

field evolves according to linear theory. The density field can be filtered with some

window function to get a smoothed field on a scale R. It is easier to perform this

operation in Fourier space, where convolutions become products:

δk(R) = δk W (kR). (1.34)

The typical choice (but not the only one) for the window function is a top-hat in

configuration space which in Fourier space becomes:

W (x) =
3

x3
(sinx− x cosx). (1.35)

We can then define the RMS mass fluctuation on a scale R as:

σ2
R ≡

〈
δ2(x;R)

〉
=

∫ ∞

0

d ln k ∆2
lin(k) W 2(kR), (1.36)

where we have introduced the dimensionless linear power spectrum:

∆2
lin(k) =

k3

2π2
Plin(k). (1.37)
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In particular, eq. 1.36 with the linear power spectrum at z = 0 with R = 8 Mpc/h is

often used in literature as a normalization of the amplitude of the power spectrum.

This value was initially chosen so that σ8 ∼ 1, i.e. at 8 Mpc/h non-linearities start

to become important. Its current best constraints comes from Planck Collaboration

et al. (2018) and it is σ8 = 0.8102± 0.0060.

1.4.2 Initial conditions

In the ΛCDM model, the Universe was subjected to a nearly exponential expansion

in its very early stages. This phase, called inflation, was originally proposed by Guth

(1981) to solve problems related to the homogeneity of the CMB, the flatness of the

Universe and the lack of magnetic monopoles. However, it was soon realized that this

event, caused by a scalar field slow-rolling towards the minimum of its potential, was

also responsible for the creation of the initial conditions that later would give birth

to large-scale structures.

By using some heuristic arguments, we can deduce how these perturbations looked

like. The typical assumption is that the scalar field has negligible self-interaction.

This means that different modes in quantum fluctuations should be independent of

each other: consequently, the density perturbations are expected to be Gaussian.

Furthermore, at the end of inflation, the perturbations in the energy density of the

scalar field are converted to photons and other particles (this process is known as

reheating): since no segregation between particle species is expected, the resulting

perturbations are isoentropic. Finally, slow-rolling causes an exponential expansion,

so that during inflation the Hubble parameters is almost constant. This means that

space is invariant under time translation: the perturbations in the metric generated

are therefore expected to be scale-invariant. The last requirement translates into a

flat dimensionless power spectrum in the potential:

∆2
ini,Φ(k) ∝ kns−1, (1.38)

where ns is the scalar index and ns = 1 defines the Harrison-Zel’dovich prescription

(Harrison (1970); Zeldovich (1972)). This result is particularly elegant and desirable,

since it means that all the scales re-enter the horizon with the same amplitude, thus

avoiding divergences in the potential that could cause too large density perturbations.

The scalar index has been measured with incredible precision by Planck (Planck

Collaboration et al. (2018)) to ns = 0.9665± 0.0038, where the difference from unity

is caused by small deviations from a perfectly exponential expansion (i.e. the slow-

rolling parameters).
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By using the Poisson equation (eq. 1.19) in Fourier space,

k2Φk = −3

2
H2

0 Ωma
−1δk, (1.39)

one obtains that the initial power spectrum of density fluctuations coming out from

inflation is:

Pi(k) ∝ Ask
ns , (1.40)

where As is called scalar amplitude and its constraints are As = (2.105±0.030)×10−9

(Planck Collaboration et al. (2018)) 8.

1.4.3 Linear evolution of power spectrum and 2PCF

The relation between the initial conditions and the linearly evolved density field is

called the transfer function T (k). By using what we learned in Section 1.3, we can

find how the initial power spectrum (eq. 1.40) evolves with time in linear PT and

how it looks like today.

Once inflation is over and reheating has occurred, we enter in a phase where the

energy density is dominated by radiation. Outside the horizon (k < aH/c) density

perturbations grow as D1(a) ∝ a2, while inside of it Meszaros effect freezes CDM

fluctuations, which are constant. This induces a scale-dependent growth that affects

all the scales that re-enter the horizon before radiation-matter equality (zeq ∼ 3500).

The net result is that the initial power spectrum is suppressed at scales smaller than

keq = 2πaeq/(cteq). It can be shown that this “missing growth” at small scales can

be described as a damping proportional to k−2 in the density field for k � keq.

Combining all these results, including the scale-dependent transfer function and the

linear growth factor, the linear matter power spectrum can be written in the following

way:

Plin(k) = Pi(k) D2
1(z) T 2(k) ∝

{
kns for k � keq

kns−4 for k � keq

. (1.41)

The first attempts to find an analytical formula for the transfer function were done

in the 1980s. The most interesting case for our purposes is the case of a CDM

dominated Universe whose density perturbations grow adiabatically. In their seminal

paper, Bardeen et al. (1986) provided a simple formula for the CDM linear transfer

function:

T (k) =
ln(1 + 2.34q)

2.34q

[
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

]−1/4
, (1.42)

8Notice that in the ΛCDM model, where the growth of perturbations is scale-independent, As
and σ8 are perfectly degenerate.
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where q = 1
Γ

(
k

h/Mpc

)
and Γ is the shape parameter Γ = Ωmh.

However, when the baryonic fraction becomes sufficiently large, eq. 1.42 no longer

returns a good description of the transfer function. In fact, when baryons fall into DM

potential wells after recombination, they leave the imprint of the BAOs on the CDM

distribution, i.e. an oscillatory feature in the matter power spectrum. The typical

scale of this oscillations corresponds to the distance traveled by acoustic waves from

the Big Bang to decoupling, named sound horizon, which is roughly rs ≈ 100 Mpc/h.

In this case, one must resort to more complicated fitting functions such as Eisenstein

& Hu (1998).

However, the accuracy of this formulae (∼ 10%) is not enough to achieve strong

constraints in current analyses. Nowadays, to compute accurate transfer functions

and power spectra, Boltzmann solvers are employed. These codes solve the linear

Boltzmann equation (eq. 1.17) for all species and redshifts. The most widely used

state-of-art solvers are CAMB9 (Lewis et al. (2000)) and Class10 (Lesgourgues (2011);

Blas et al. (2011)) which can predict the linear matter power spectrum with an

accuracy of ∼ 0.1%.

The solid line of Figure 1.1 shows the linear matter power spectrum computed using

the best-fit cosmological parameters from Planck Collaboration et al. (2018). There

is a striking agreement between the theory and the data coming from a huge variety

of experiments (the various dots) testing different probes over a range of four decades

in scales. See Planck Collaboration (2018), from where this plot was actually taken,

for more details.

The shape of the linear matter power spectrum is the result of the mechanisms de-

scribed in this and in the previous Section. The largest scales, larger than the size

of the horizon at the radiation-matter equality, did not experience Meszaros effect

and therefore they have kept the original form given by the Harrison-Zel’dovich for-

mula. In other words, in this regime T (k � keq) → 1. The peak of the power

spectrum corresponds at the wavenumber of those perturbations which entered the

horizon exactly at radiation-matter equality. At small scales (k & 0.5 h/Mpc) the

power spectrum decreases as ∝ kns−4 due to the missing growth caused again by the

Meszaros effect. On intermediate scales, roughly 0.01 . k/(h/Mpc) . 0.5, baryons

falling in DM potential wells leave an imprint on the matter power spectrum, the

BAOs. As already said, the wavelength of these oscillations corresponds to the size

of the sound horizon at recombination. This oscillating feature is much more visible

9https://camb.info/
10http://class-code.net/
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Figure 1.1: The black solid line shows the matter linear matter power spectrum at z = 0
computed using the best-fit parameters from Planck (2018) in the ΛCDM model. The dotted
black line represents the non-linear counterpart (see Section 1.4.4 for an insight). Dots of
different colors are extrapolated values for P (k) - coming from different experiments and
probes - which are in impressive agreement with theory over four decades in scales. Taken
from Planck Collaboration (2018).

in configuration space, i.e. in the 2PCF (see the right panel of fig. 1.2). In fact,

whenever Fourier transforming a sinusoidal function, a Dirac delta is involved: here

is the reason of the appearing of a bump in the 2PCF that peaks approximately at

rs. The net effect of BAOs on large-scale structure is therefore an excess of galaxies

at a separation of ∼ 100 Mpc/h (first detected in galaxy surveys by Eisenstein et al.

(2005)).

1.4.4 Non-linearities

Besides the fact that DM is not directly observable, we do not have access to the

linear power spectrum, because at a given time and at a given scale, linear theory

breaks down. This occurs when ∆2
lin(k, z) ∼ 1, so that we can roughly predict the

scales below which non-linearities become important at a given redshift (Smith et al.

(2003)):

knl(z) = knl(0) (1 + z)
2

2+ns , (1.43)
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where a typical value for knl(0) is 0.2 h/Mpc (Sprenger et al. (2019)). Therefore,

smaller scales enter the non-linear regime before large scales.

Like in Section 1.3.3, the two main ways to predict the non-linear power spectrum

are PTs, N -body simulations or halo models (e.g. Cooray & Sheth (2002)).

In SPT, the power spectrum can be computed from its definition (eq. 1.32) expanding

the density field δ (see e.g. Bernardeau et al. (2002) for the complete expressions):

P SPT(k) = P11(k) + P13(k) + P22(k) + ..., (1.44)

where Pij is the power spectrum computed using the solutions at i-th and j-th order

for δ (so that P11 is actually the linear power spectrum). For Gaussian initial condi-

tions only terms with i+ j = even survive. However, as already said, this treatment

breaks down when δ ∼ 1 and has a convergence problem, in the sense that higher

order corrections happen to be of the same order of magnitude of the previous ones

and sometimes these terms are even negative and lead to huge cancellations between

different orders.

On the other hand, using the Zel’dovich approximation (ZA) in LPT, one can find

(e.g. Crocce & Scoccimarro (2006)):

P ZA(k) =

∫
d3r eik·r

[
e−k

2σ2
v+I(k,r) − 1

]
(1.45)

where

I(k, r) =

∫
d3p

(2π)3
cos(p · r)

(p · k)2

p4
Plin(p) (1.46)

and σ2
v = I(k, 0)/k2 is the variance of the displacement field (and also the one-

dimensional velocity dispersion in linear theory),

σ2
v(z) =

∫ ∞

0

dq

6π2
Plin(q, z). (1.47)

The Zel’dovich approximation has a limited range of validity when dealing with the

power spectrum, but it has been widely used in literature for the 2PCF since it can

predict the correct clustering down to scales of some tens of Mpc/h (White (2014)).

In fact, non-linearities smear the BAO peak in the 2PCF (see fig. 1.2 for a visual

example) by a quantity that in first approximation depends on σ2
v . This smoothing

is caused by the differential motion of pairs of tracers driven by bulk flows. The

Zel’dovich approximation is nowadays used to trace back galaxies to their original

positions in order to enhance the signal of the BAO peak: this technique is known as

BAO reconstruction (Eisenstein et al. (2007); Noh et al. (2009); Padmanabhan et al.

(2009); Seo et al. (2010), see Padmanabhan et al. (2012) for an application).
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A similar way of modelling the BAO smearing consists of “de-wiggling” the linear

power spectrum before Fourier transforming it, namely: (Tegmark et al. (2006);

Eisenstein et al. (2007))

Pdw(k) = [P (k)− Pnw(k)] e−k
2σ2
v + Pnw(k), (1.48)

where σ2
v is given by eq. 1.47 and Pnw(k) is the no-wiggle power spectrum, i.e. a

power spectrum where the BAO have been completely smeared out (e.g. Eisenstein

& Hu (1998)).

Alternatively to PTs there are N -body simulations, which can return accurate power

spectra up to very small scales. Comparison of different codes implementing different

ways to compute forces (particle mesh, tree algorithms and a mixture of the two)

have highlighted a difference of ∼ 3% on the non-linear matter power spectrum at

k = 10 h/Mpc and z = 0 (Schneider et al. (2016)). Of course running simulations

requires time and a large computational power and it is not an effective solution if one

needs quick estimates of non-linear clustering, for example in Markov Chain Monte

Carlo (MCMC) samplings, where thousands of spectra must be evaluated for different

cosmological parameters.

An innovative approach was developed at the end of the 1990s to describe non-

linear matter clustering as the hierarchical formation and evolution of collapsed and

virialized DM structures called halos. In this halo model paradigm, all DM particles

reside in halos whose density profiles are assumed to be universal and dependent only

on mass: the usual choice falls on the Navarro-Frenk-White profile (NFW, Navarro

et al. (1997)). Furthermore, the halo mass function, i.e. the number of halos per unit

mass per unit volume, can be computed from a universal function which is cosmology-

independent: this was first shown by the seminal work of Press & Schechter (1974)

and later perfected by Bond et al. (1991). A follow up work by Sheth & Tormen (1999)

improved the agreement of the halo mass function with simulations by relaxing the

assumption of spherical collapse. The non-linear power spectrum as computed in this

picture has two contributions: the former is coming from the small scales, where the

density field is related to the density distribution inside single halos (1-halo term);

the latter comes from the correlation among DM particles belonging to separate

halos (2-halo term) and reflects the large-scale fluctuations. The region where the

two contributions are of the same order of magnitude can be seen as the scale of the

typical halo sizes (∼ 1 Mpc). For the details of this model, we refer to Cooray &

Sheth (2002). Unfortunately, the halo model cannot reproduce well the results from

N -body simulations, especially in the transition regime between the 1-halo and the
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2-halo terms, where there are differences with respect to simulations up to ∼ 20%

(e.g. Massara et al. (2014), where the halo model is extended to include also massive

neutrinos).

The two valid alternatives to the halo model are represented by emulators and fitting

functions. The first class predicts the non-linear correction to the linear power spec-

trum by interpolating a grid of power spectra given by N -body simulations run with

different sets of cosmological parameters. Emulators can reach an accuracy of 2− 3%

up to scales of ∼ 10 h/Mpc (see e.g. Euclid Collaboration et al. (2019b); Angulo et al.

(2020)), i.e. the typical accuracy of N -body codes. The second alternative precisely

consists of finding fitting functions to simulations in order to be as close as possible

to the theoretical prediction. This technique is commonly referred to as HALOFIT.

The first version of HALOFIT dates back to Smith et al. (2003), where the non-linear

matter power spectrum was written as the sum of two terms, a quasi-linear one dom-

inating at large scales and a “halo” one, catching the small-scale physics. Following

versions would include effects of massive neutrinos (Bird et al. (2012)) and improve

the accuracy (Takahashi et al. (2012)). The latest version, which is the one we make

constant use of throughout this work, is the one by Mead et al. (2015, 2016), also

called HMcode. It consists of a reinterpretation of the halo model, where new degrees

of freedom are introduced to relieve the discrepancies the original halo model suffers

from. This version is accurate at 5% at scales up to 10 h/Mpc. For details about

every model just discussed, see Appendix A.

In fig. 1.2 we summarize the things discussed in this Section. We set the cosmological

parameters to Ωb = 0.0486, Ωm = Ωb + Ωc = 0.3089, h = 0.6774, As = 2.14 ×
10−9, ns = 0.9667 and these will be used as the fiducial ones for the ΛCDM model

throughout Chapters 1 and 2 (we report these values in Table 1.1). In the left

panel we show with solid lines the non-linear matter power spectrum computed with

the HALOFIT prescription by Mead et al. (2015). Dashed lines represent the linear

prediction, computed with CAMB. It is interesting to notice how non-linearities cause

an enhancement of power at small scales and that the departure from linear theory

occurs at larger scales for decreasing redshift, like already anticipated in eq. 1.43. The

right panel shows instead the linear (dashed lines) and non-linear (solid lines) 2PCF

multiplied by a factor r2 to make the BAO feature clearly visible. The latter has

been smoothed following the procedure by Tegmark et al. (2006), in which the linear

power spectrum is de-wiggled before being turned non-linear and Fourier transformed.

Apart from this smearing effect, the linear and the non-linear 2PCFs do not differ
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Figure 1.2: Summary of two-point statistics for total matter in the ΛCDM model. In the
left panel power spectra at different redshifts are shown whereas in the right panels we
display 2PCF multiplied by a r2 factor to better show the BAO feature. Solid lines show
the non-linear prediction according to Mead et al. (2015), where we have also smoothed the
BAO peak using the prescription of Tegmark et al. (2006). Dashed lines instead represent
linear theory. Different colors label different redshift.

Parameter Value Notes
Ωm 0.3089 Fixed when adding massive neutrinos
Ωb 0.0486
Ωc 0.2603 Will decrease when adding massive neutrinos
h 0.6774
As 2.14× 10−9

ns 0.9667

Table 1.1: Fiducial values for the ΛCDM cosmology used in this and in the following
Chapter. When we add massive neutrinos in Chapter 2, we will keep Ωm and Ωb fixed, so
that an increase in Mν will correspond to a decrease in Ωc.

much from each other down to scales of ∼ 5− 10 Mpc/h at z = 0 (not shown in the

Figure), where ξ(r) ∼ 1.

1.5 Observables of large-scale structure

As already mentioned, DM and in turn the matter power spectrum are not directly

observable. Therefore, to infer constraints on the cosmological parameters, one has

to choose a proxy, i.e. an observable which is strictly related to the DM distribution.

Large-scale structure offers several different possibilities, depending on which scales

need to be probed and which physical processes we are interested. In this Section we
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expose the main quantities we are going to deal with in this work, what they can be

used for and what their statistical uncertainties are.

1.5.1 Clustering of biased tracers

While DM is not accessible, the objects we observe in the Universe (e.g. galaxies,

DM halos, galaxy clusters) indirectly trace its distribution. The relation between the

clustering of the tracer and the actual matter distribution is called biasing.

Bias is a functional that links the matter density field δ to the tracer density field δg:

δg = B[δ]. (1.49)

On very large scales, gravity is linear and the density perturbations are small: it

makes sense therefore to perform a Taylor expansion in the local mass density with

unknown coefficients. On top of that, one may also add terms that reflect non-

locality or contributions due to primordial non-Gaussianity in the initial density field

(Desjacques et al. (2013)). For a full review, see Desjacques et al. (2018).

To a first approximation, therefore, the tracer density field is just a multiple of the

matter density field, namely:

δg = b1 δ, (1.50)

where b1 is the linear bias parameter which is assumed to be constant in k. For the

purposes of this thesis, this expression will be enough. It is just worth mentioning

the fact that linear bias and in general all bias parameters may depend on many

different quantities, e.g. the magnitude threshold or color when observing galaxies or

the minimum mass when observing galaxy clusters or DM halos.

Given this linear relation between tracers and underlying matter density fields, the

power spectrum of a biased tracer in the linear approximation is just given by:

Pg(k) = b2
1 P (k), (1.51)

where the full non-linear power spectrum must be used in eq. 1.51. An analogous

relation holds for the 2PCF.

When measuring the power spectrum from data or simulations, one runs up against

uncertainties of observational and statistical nature. It can be shown that the covari-

ance between the power spectrum measured at ki and kj can be written as the sum

of two terms (e.g. Scoccimarro et al. (1999)):

CovPij ≡ 〈P (ki)P (kj)〉 − 〈P (ki)〉 〈P (kj)〉 =

=
(2π)2

k2
i ∆k V

[
P (ki) +

1

n̄

]2

δKij +
T̄ (ki, kj)

V
. (1.52)
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In the first term, V is the survey volume, ∆k is the bin size in k, n̄ is the average num-

ber density of objects, δKij is the Kronecker delta. This contribution is called cosmic

variance and here comes from the Gaussianity of the field: in fact, in the Gaussian

limit, all the Fourier modes evolve independently (hence the Kronecker delta) and

the power spectrum exactly represents the variance of the density perturbation field

on a scale k. All the terms before the square brackets are inversely proportional the

number of modes k of a given shell of a sphere in Fourier space. Moreover, the 1/n̄

term is called shot noise (here assumed to follow Poisson statistics) and arises because

of self-correlations of objects.

The second contribution comes from the non-linear evolution of the density field, when

non-Gaussianities induced by growth of perturbations give rise to a non-vanishing

four-point statistics. Therefore it is expected to become non-negligible only for

k & knl. In this case, T̄ (ki, kj) is the trispectrum for objects in a parallelogram

configuration, averaged over all the possible orientations (following from statistical

isotropy of the power spectrum).

If, on the other hand, one wanted to compute the covariance matrix for the 2PCF, it

is easy to show that:

Covξij ≡
2

V

∫ ∞

0

dk k2

2π2

[
P (k) +

1

n̄

]2

j0(kri) j0(krj) +

+
1

V

∫ ∞

0

dk k2

2π2
j0(kri)

∫ ∞

0

dk′ k′2

2π2
j0(k′rj) T̄ (k, k′). (1.53)

1.5.2 Cosmic shear

Gravitational lensing is the deflection of light caused by the gravity of a massive

object. It was one of the first predictions of GR to be confirmed by Eddington in

1919. Potential perturbations in the FLRW metric affect the geodesics of photons

thus distorting the images of distant galaxies. In the limit where the deflection is

small, we talk about weak gravitational lensing; when the distortion is caused by

perturbations in the large-scale structure gravitational potential, we name it cosmic

shear. Measurements of orientations of large catalogues of galaxies have become

more and more popular in the last decade as cosmic shear surveys have proved to

be a promising and powerful tool for cosmological parameter inference (Hildebrandt

et al. (2017); Köhlinger et al. (2017); Hildebrandt et al. (2020); Abbott et al. (2018,

2019); Joudaki et al. (2020)).

The derivation of the equations that rule light deflection is purely geometrical and

can be found e.g. in Mo et al. (2010) or Bartelmann & Schneider (2001). Here
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we just summarize the essential steps, assuming a flat Universe. Let us assume that

the sources of light (galaxies) are distributed along the line-of-sight according to some

function P(χ), where χ denotes the comoving distance. For each source, the mapping

between its real angular position θS at a distance χS and the observed one θ0, in the

weak lensing limit (Φ� c2), is governed by the Jacobian of the transformation:

Aij(θ0, χS) =
∂θS,i
∂θ0,j

= δij − ∂i∂jΨ [χθ0, χS] , (1.54)

where i, j are the two direction in the plane of the sky. Ψ is the distance-weighted

projection of Newtonian gravitational potential, namely:

Ψ(x⊥, χS) =
2

c2

∫ χh

0

dχ g(χ) Φ (x⊥, χ) , (1.55)

where the integral extends from the observer to the horizon χh and

g(χ) = χ

∫ χh

χ

dχ′
χ′ − χ
χ′

P(χ′) (1.56)

is called lensing efficiency. From the Jacobian matrix the main random fields for

weak lensing are defined. Convergence κ quantifies how much the distorted image is

stretched; shear γ = γ1 + iγ2 describes how much the image is rotated. Here, 1 and

2 are the two directions in the plane of the sky. In formulae:

κ(θ0) =
1

2
(∂1∂1Ψ + ∂2∂2Ψ) (1.57)

γ(θ0) =
1

2
(∂1∂1Ψ− ∂2∂2Ψ) + i∂1∂2Ψ. (1.58)

These two are the fundamental fields upon which the statistical observables are built.

Interestingly, from a statistical point of view, under some conditions the shear and

the convergence power spectra are equivalent. We can manipulate the definition of

convergence by adding a second derivative in the line-of-sight direction ∂3∂3. In this

way we build a Laplacian operator that can be applied to the potential in eq. 1.55

to recover Poisson equation. The addition of such derivative does not carry any

contribution to the observable, because integrating along the line-of-sight cancels out

all the possible contributions. Making use also of Poisson equation (eq. 1.39), we get:

κ(θ0) =
3

2
Ωm

(
H0

c

)2 ∫ χh

0

dχ (1 + z(χ)) g(χ) δ [χθ0, χ] . (1.59)

To obtain the convergence (or equivalently the shear) power spectrum, we need to

perform few more steps. First, we square 1.59 and switch to Fourier space in order
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to obtain a matter power spectrum at right hand side. Second, we assume the flat-

sky approximation, so that the Fourier modes are plane waves. Third, we assume

Limber’s approximation (Limber (1953)), valid at small angles or equivalently at

high multipoles `, thanks to which Bessel functions arising from spherical harmonics

expansion can be replaced by Dirac deltas. Finally, we generalize the above expression

for different bins of sources. All in all, the shear power spectrum is given by:

C(ij)(`) =

∫ ∞

0

dz
c

H(z)

W (i)(z)W (j)(z)

χ2(z)
P

(
`

χ2(z)
, z

)
, (1.60)

where we have changed the integration variable dχ = c dz/H(z) and W (i)(z) are the

window functions for shear:

W (i)(z) =
3

2
Ωm

(
H0

c

)2

(1 + z) χ(z)

∫ ∞

z

dx P(x)
χ(x)− χ(z)

χ(x)
. (1.61)

The meaning of eq. 1.60 is pretty straightforward: the shear power spectrum measures

correlations of galaxy pairs orientations when both of these are lensed by large-scale

structure.

Of course, when we observe the shape of a galaxy (i.e. its convergence and its ori-

entation), we may not know a priori whether this is lensed or not. Therefore, when

measuring the shear spectrum from data, also spurious correlations are measured.

This important systematic must be dealt with and it is called intrinsic alignment : it

arises when two galaxies are aligned but only one or none of them is lensed. This

may occur when galaxies are born in the same gravitational environment, where tidal

forces could align galaxies right at the time of their formation. The observed shear

of a galaxy is a sum of two contribution, one due to lensing, the other being intrinsic

to the galaxy γtot = γG + γI . When correlating this object with itself to obtain the

power spectrum, it gives rise to three terms:

C
(ij)
tot (`) = C

(ij)
GG (`) + C

(ij)
GI (`) + C

(ij)
II (`). (1.62)

The first term (GG) represents the cosmological signal, eq. 1.60; the second term

(GI) arises when some galaxy at a given redshift is lensed by a structure at a lower

redshift and aligned to a galaxy which is not lensed; the last term (II) arises when

two galaxies are already aligned without the need of lensing but their correlation is

accounted for anyway in the survey. There are different ways to model the GI and II

terms (see Joachimi et al. (2015) for a review), but typically the effect is proportional

to P (k, z). We will discuss this in detail in Chapter 4.
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From eq. 1.60, it is straightforward to realize that the statistical and observational

uncertainties on the shear power spectrum are directly related to the ones on the

matter power spectrum. If one wanted to compute the covariance matrix of the shear

power spectrum, the result would be (see e.g. Scoccimarro et al. (1999); Cooray &

Sheth (2002)):

Cov{C(ab)(`), C(cd)(`′)} =
δ``′

(2`+ 1) ∆` fsky

[
C̃(ac)(`) C̃(bd)(`′) + C̃(ad)(`) C̃(bc)(`′)

]
+

+
1

4πfsky

T̄ (abcd)(`,−`′). (1.63)

Similarly to the power spectrum case, the first term represents cosmic variance, i.e.

the Gaussian contribution which dominates at small multipoles. The factor (2`+1)∆`

is analogous to the factor k2
i ∆k in eq. 1.52, i.e. the number of modes in a given mul-

tipole shell, while fsky is the fraction of the sky actually being observed (analogous to

the volume in eq. 1.52). The various C̃(ij)(`) in square brackets represent the signal

(including the intrinsic alignment contribution) plus a shape-noise term N (ij)(`), anal-

ogous to shot-noise in galaxy surveys. The latter can be written as N (ij)(`) = δijσ
2
ε/n̄,

where σ2
ε is the RMS ellipticity of the galaxies in the sample. The second term, finally,

is the non-Gaussian contribution: this arises because of non-linearities in the matter

power spectrum and therefore introduces correlations between different multipoles.

It starts to be non-negligible already at ` & (2− 3)× 102 (Sgier et al. (2019)). Like

in the case of the power spectrum, the shear four-point function T (abcd) is involved,

averaged on a circular shell in ` and integrated over all the possible parallelogram

configurations.

We summarize this last Section in fig. 1.3, where we show the shear power spectrum

split into all its contributions. We use three redshift bins, with a distribution P(z) ∝
z2 exp (−z/0.24) and with edges (0.1, 0.478), (0.478, 0.785) and (0.785, 1.5). For

each combination of pairs of bins, in the corresponding panel we plot the shear power

spectrum (solid blue lines), the GI and II intrinsic alignment contributions (solid

green and red, respectively) and the total measured shear spectrum (solid black lines).

For intrinsic alignment, we use the linear alignment model by Hirata & Seljak (2004).

As expected, the intrinsic alignment contributions are relatively large for bins closer

in redshift, as galaxies are born in the same gravitational environment. The dashed

lines represent the same quantities, but to compute them we used the linear power

spectrum instead of the full non-linear one: in this way it becomes clear where non-

linearities start becoming important (` & 102). The dotted magenta lines appearing

in the panels on the diagonal are the shape-noise term (assuming σε = 0.3). The gold
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Figure 1.3: Shear power spectrum for a distribution of galaxies in 3 redshift bins.
The distribution is chosen to be P(z) ∝ z2 exp (−z/0.24), the bin edges are at z =
0.1, 0.478, 0.785, 1.5. In each panel, the solid black line represents the measured shear power
spectrum for that pair of bins. The latter can be split into the cosmological signal (solid
blue lines) and the intrinsic alignment contributions (GI in green, II in red). The dot-
ted lines represent the same quantities, but assuming linear theory for the matter power
spectrum. The dotted magenta line is the shape-noise term, where we assumed a RMS
ellipticity of 0.3. Gold shaded areas represent the cosmic variance expected from a survey
with fsky = 0.366; grey shaded areas are regions were measurements will likely be excluded
from the analysis in future surveys.

shaded area represent cosmic variance (first term of right hand side of eq. 1.63) for

a survey with fsky = 0.366. The grey shaded areas at the sides of each panel are the

regions that are likely to be excluded in future surveys: at low multipoles (` . 10)

because Limber’s approximation breaks down; at large multipoles (` ∼ 2000− 5000,

see Sprenger et al. (2019); Audren et al. (2013); Euclid Collaboration et al. (2019a))

because the uncertainties on the matter power spectrum become too large to add any

constraining power to the survey.
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1.5.3 Other large-scale structure observables

Along with the observables just described, there are several more which can be used

to infer constraints on cosmological parameters. Here we briefly summarize the more

widely used among them.

The first is the Ly-α forest. Light from distant quasar interacts with intergalactic

medium (IGM) clouds at lower redshift, giving rise to a series of absorption lines at

different wavelengths, according to the redshift of the cloud and its relative velocity:

λabs = λLy−α(1 + z)

√
1 + v/c

1− v/c, (1.64)

where λLy−α = 1215.67 Å. Since quasars are very luminous objects and can be found

up to relatively high redshifts, the Ly-α forest constitutes a powerful tool for cosmo-

logical constrants in a redshift range of 2−5 (Viel et al. (2005, 2013)). Moreover, it

can probe the DM properties up to very small scales (0.5 Mpc/h . λ . 20 Mpc/h).

The observable is the flux power spectrum PF (k) of the transmitted bolometric photon

flux. The only limitation with Ly-α data comes from the thermal cut-off in the power

spectrum induces by pressure and thermal motions of the gas inside the photo-ionised

IGM: this is the reason why this observables has provided tight constraints on various

DM scenarios that present small-scale power suppressions (see e.g. Iršič et al. (2016);

Murgia et al. (2018)). Moreover, one of the current tightest constraints on total

neutrino mass comes from combining Ly-α data with CMB, providing Mν < 0.12 eV

at 95% confidence level (Palanque-Delabrouille et al. (2015a)).

Another observable, always related to the IGM, that is expected to play a key role in

the near future is the 21 cm intensity mapping (Bharadwaj et al. (2001); Bharadwaj

& Sethi (2001); Battye et al. (2004); McQuinn et al. (2006); Chang et al. (2008);

Loeb & Wyithe (2008); Bull et al. (2015)). The 21 cm emission line corresponds to

the spin-flip transition of the neutral hydrogen (HI) atom. Despite this transition

is particularly rare, being only a hyper-fine structure effect, the large amount of HI

present in galaxies and in the IGM makes its flux relatively intense. The idea is to

measure the 21 cm emission from unresolved galaxies with a low angular resolution

survey (Santos et al. (2015)). The HI power spectrum is expected to follow the shape

of the matter one, with a different amplitude that depends both on the HI bias and

its density parameter ΩHI(z) (see e.g. Villaescusa-Navarro et al. (2015)):

P21 cm(k, z) = δTb
2
(z) b2

HI(z)

(
1 +

2

3
β(z) +

1

5
β2(z)

)
Pmm(k), (1.65)
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where

δTb(z) = 189
H0 (1 + z)2

H(z)
ΩHI(z) h mK (1.66)

is the average brightness temperature, β(z) = − 1
bHI(z)

d lnD1(z)
d ln(1+z)

is the redshift-space

distortion parameter (Kaiser (1987)).

Since the redshift evolution consists essentially of a re-scaling of the total matter, non-

linear power spectrum, HI intensity mapping can be used to place tight constraints

on cosmological parameters (see Bull et al. (2015) for a forecast analysis).
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2
Massive neutrino cosmology

I have done a terrible thing: I have
postulated a particle that cannot be
detected.

Wolfgang Pauli

Neutrinos... win the minimalist
contest: zero charge, zero radius
and very possibly zero mass.

Leon Lederman

2.1 Why “massive” neutrinos? Why cosmology?

Neutrinos were first theorized in 1930 by Wolfgang Pauli to explain the continuous

energy spectrum of protons and electrons in β-decays. In order to avoid a violation of

energy conservation, it was proposed that the missing energy was carried by a particle

that needed to be electrically neutral and weakly interacting with detectors. The first

neutrino detection dates back in 1956, thus making Pauli’s quote above wrong.

According to the Standard Model of particle physics, neutrinos come in three different

flavors (νe, νµ, ντ , one for each corresponding lepton), only interact via the weak

nuclear force and are massless. However, while the first two predictions have been
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confirmed by the latest experimental data (Tanabashi et al. (2018)), there are well-

motivated physical models where neutrinos acquire mass (e.g. Gonzalez-Garcia &

Nir (2003); Hirsch & Valle (2004); Altarelli & Feruglio (2004); Mohapatra & Smirnov

(2006)).

One way to detect whether neutrinos are massive was proposed by Bruno Pontecorvo

through the detection of neutrino oscillations, i.e. a process that does not conserve

neutrino flavor. This phenomenon was first proposed to explain the measured flux

of electron neutrinos from the Sun, which was much smaller than expected. In fact,

if the mass is small, oscillations actually occur on astronomical distances. From a

theoretical point of view, this means that the neutrinos we measure are not exact

eigenstates of the Standard Model Lagrangian, but a linear combination of three

mass states (ν1, ν2, ν3). Neutrino oscillations have nowadays been detected by several

independent experiments, claiming the need of a theory beyond the Standard Model

(and disproving also the second quote above). Unfortunately, neutrino oscillations

only depend on the difference of square masses between different species, making it

impossible to solve the full system of equations and constrain the total mass scale,

i.e. the sum of the neutrino masses Mν =
∑

imν,i. The up-to-date constraints can

be found in Tanabashi et al. (2018):

∆m2
21 =

(
7.55+0.20

−0.16

)
× 10−5 eV2 (2.1)

∆m2
32 =

{(
2.42+0.03

−0.03

)
× 10−3eV2 (NH)(

−2.50+0.04
−0.03

)
× 10−3eV2 (IH),

(2.2)

where we have separated the cases of normal hierarchy (NH) and inverted hierarchy

(IH) as the two possible schemes neutrino masses can take (see fig. 2.1). In particular,

with these data we can infer a lower limit on the sum of neutrino masses in the two

scenarios:

Mν,min ≈
{

0.058 eV (NH)

0.1 eV (IH)
(2.3)

An appealing possibility is that the number of massive neutrinos is larger than 3. In

this case, the extra neutrino states must be sterile (as opposed to the usual active

ones), i.e. singlets of the Standard Model that only interact via gravity. While

this particular new particle has some interesting consequences in cosmology (see e.g.

Abazajian (2017) for a review), in this work we will only talk about active neutrinos.

As we will see more in detail in the following Sections, cosmology is mainly sensitive to

the sum of the three neutrino masses Mν , at least at first order, while it is completely

blind to neutrino mixing angles. Neutrino cosmology therefore constitutes a powerful
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Figure 2.1: The two allowed schemes for neutrino masses: normal hierarchy (NH) and
inverted hierarchy (IH). The minimum masses allowed in each scenario are found by setting
the lowest neutrino eigenstate mass to zero. Taken from Lesgourgues & Pastor (2006).

way of combining particle physics and astrophysics. If neutrinos were massless, they

would be completely indistinguishable from photons, since they would behave like a

relativistic gas at present time as they would have always done through cosmic ages.

However, if neutrinos do possess a mass, they freely stream across the Universe at

early times and become non-relativistic at redshift z ∼ 102−103, starting to cluster in

halos like CDM and baryons, although in a much weaker way. This has sizeable effects

on the growth of perturbations and on large-scale structure in general. Therefore, an

extension of the ΛCDM model we described in Chapter 1 needs to be introduced:

describing the Universe in presence of massive neutrinos is the aim of this Chapter.

2.2 Impact on background cosmology

We shortly investigate on the effect of neutrinos on background. We first start by

summarizing the main events of neutrino thermal history, focusing in particular on

the evolution of the density parameters; we then turn to addressing the impact of

neutrino mass on the distance measures introduced in the previous Chapter.

2.2.1 Thermal history and density parameter

Neutrinos were copiously produced in the very early Universe and kept at thermal

equilibrium by weak interactions. The momentum spectrum of each neutrino species
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is given by the Fermi-Dirac distribution:

fFD =
g

h3
P

1

exp[β(E − µ)] + 1
, (2.4)

where g = 1 is the spin-multiplicity for neutrinos, hP is the Planck constant, β =

(kBTν)
−1 and E = (p2c2 +m2c4)1/2. The chemical potential µ can be safely neglected,

since no neutrino-antineutrino asymmetry is predicted.

The energy density of the primordial Universe is mainly carried by relativistic particles

and so is its entropy. As long as neutrinos interact in the primordial plasma, their

temperature is the same of radiation and scales as Tν ∝ a−1. Neutrinos then decouple

from the photon fluid when they are still relativistic, ∼ 1 s after the Big Bang and

their momentum distribution is frozen from that moment onwards, i.e. E = pc at

denominator of eq. 2.4. However, when the temperature drops below the electron

mass (∼ 0.511 MeV), electrons and positrons start to annihilate and freeze-out from

the photon fluid. The entropy released is transferred to the photons, but not to

neutrinos. Therefore the temperature of CνB is expected to be smaller than the one

of the CMB according to the entropy conservation law, that yields:

Tν = Γν,instTγ, (2.5)

where Γν,inst =
(

4
11

)1/3
. This value must be slightly modified if we want to take into

account the distortions in the neutrino temperature spectrum introduced by flavor

oscillations and the fact that the decoupling between photons and neutrinos is not an

instantaneous process. Such corrections are usually expressed in terms of an effective

number of relativistic degrees of freedom defined as:

Neff = Nν
Γ4
ν

Γ4
ν,inst

, (2.6)

where Nν = 3 is the number of active neutrinos and Γν ≈ 0.71649. All in all,

Neff ≈ 3.046 (Mangano et al. (2005)) and the predicted temperature of the CνB is

Tν,0 ≈ 1.95 K at present time.

From eq. 2.4 one can compute the density and pressure of neutrinos for each species

as:

ρν,i =

∫
d3p

E(p)

c2

1/h3
P

eβpc + 1
(2.7)

Pν,i =

∫
d3p

p2c2

3E(p)

1/h3
P

eβpc + 1
. (2.8)
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It is easier to relate the cosmological neutrino density to the CMB density. For a

single species we have:

ρν,i(z) =
15

π4
Γ4
ν ργ(z) F

[
mν,i

(1 + z)kBTν,0

]
, (2.9)

where

F(y) =

∫ ∞

0

dx x2

√
x2 + y2

ex + 1
. (2.10)

Using eqs. 2.9-2.10 is useful to find the parameter of state for each species at a given

redshift:

wν,i =
1

3

[
1− d lnF(y)

d ln y

]
, (2.11)

where y =
mν,i

(1+z)kBTν,0
. It is easy to verify that at high redshifts, where y � 1, F

is approximately constant and wν → 1/3, so that neutrinos behave like radiation.

However, as the Universe expands, they become non-relativistic at

1 + znr = 1890
mν,i

1 eV
(2.12)

and their parameter of state slowly approaches zero, meaning that neutrinos behave

like pressureless matter at late times. When this happens, the neutrino density pa-

rameter (for all species) can be well approximated by:

Ων =
Mν

93.14 h2 eV
. (2.13)

This double behaviour of neutrinos at different times has a direct impact on the

Hubble parameter. Inserting massive neutrinos in the energy budget of the Universe

yields, in the most general case,

H2(z) = H2
0

{
Ωcb(1 + z)3 + ΩΛ + Ωγ(1 + z)4 + ΩK(1 + z)2 +

+
Nν∑

i=1

15

π4
Γ4
ν Ωγ F

[
mν,i

(1 + z)kBTν,0

]
(1 + z)4

}
, (2.14)

where we have gathered CDM and baryons in a single “CDM+b” fluid (cb). The

evolution of the density parameters Ωi for a flat Universe with massive neutrinos is

sketched in fig. 2.2, split in all its contributions. The cosmological parameters chosen

are given in Table 1.1, to which we add three different neutrino species with masses

mν = [0.05, 0.01, 0] eV (so that Mν = 0.06 eV). It must be stressed that, here like ev-

erywhere else in this work, what we keep fixed in the different cosmological models is

the total matter density (Ωm = Ωc +Ωb +Ων): in other words, an increase in neutrino
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mass comes at the expenses of a decrease in Ωc. Therefore here Ωc = 0.2589. The

green solid line represents Ωγ (here fixed by Tγ = 2.7255 K), the radiation density

parameter, which dominates the energy content of the Universe at early times. After

radiation-matter equality, CDM (solid blue) and baryons (solid red) give rise to the

matter dominated era. In the right part of the plot, dark energy (solid black line)

rises up to dominate at present time (denoted by the dot-dashed vertical line). The

solid, dashed and dotted magenta lines show the evolution of the density parameter

of the three different neutrino species with different masses - 0.05, 0.01 and 0 eV,

respectively. As expected, all the species are relativistic at early times and contribute

to the energy density like radiation. As the temperature drops below their mass,

each species makes a non-relativistic transition, starting from the most massive. This

occurs at znr . 100 for the two non-vanishing masses considered here. This has im-

portant consequences for instance when running simulations with massive neutrinos:

in fact, initial conditions are typically set in this transition epoch and neglecting the

contribution of relativistic particles to the Hubble parameter may lead to incorrect

results (Zennaro et al. (2017)).

2.2.2 Distances

The fact that neutrinos change the expansion rate of the Universe of course affects

also the distances we measure at fixed redshift. This is shown in fig. 2.3. In each

of the top panels we show some key background quantities in ΛCDM cosmology. In

the left one we plot the quantity c/H(z) which enters in the computation of all the

other distances which are shown in the center and right panels. The central panel

is reserved to the comoving, luminosity and angular diameter distances, represented

by the solid, dashed and dot-dashed lines respectively. Finally, the right panel shows

the isotropic volume distance. The bottom panels represent the relative difference

of the various quantities Q = {c/H, χ,DL, DA, DV } with respect to the ΛCDM case

when we add a single massive neutrino species, with mass Mν = 0.2 eV (dashed line),

0.4 eV (dot-dashed) and 0.6 eV (dotted). Once again we remark that every time we

increase Mν we automatically decrease Ωc. Notice that for χ,DL and DA the relative

differences are the same. The differences in the background quantities only reach 1%

for redshifts of order z ∼ 103 and for neutrino masses which are already excluded at

95% confidence level, making it challenging to put constraints on neutrino mass using

only background quantities. In fact, as we will show in the next Section, the greatest

differences with respect to ΛCDM come from the growth of perturbations and this is

where the true constraining power of cosmology on Mν comes from.
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Figure 2.2: Evolution of density parameters as a function of scale factor or, equivalently,
redshift for a flat Universe. The green line is the radiation density parameter that dominates
at early times before dropping down, leaving the stage to a matter dominated era (with
baryons in red and CDM in blue). The black line is the cosmological constant. The
solid, dashed and dotted lines represent the density parameter of three different neutrino
species with masses 0.05, 0.01 and 0 eV, respectively. As it can be clearly seen, the most
massive species become non-relativistic first and when it occurs, they start behaving like a
pressureless fluid. The total energy density (which is always equal to 1) is denoted by the
dotted black line. Finally, the dot-dashed vertical line at a = 1 denotes present time.

2.3 Impact on density perturbations

As we saw in the previous Section, neutrinos do not change radically background

quantities like density parameters and various distance measures. What they do

affect in a sizeable way is the growth of density perturbations both at linear and

non-linear level. In this Section we revise linear PT and non-linearities in presence of

massive neutrinos, highlighting the differences with respect to the ΛCDM case.

2.3.1 Equations of motion

When dealing with neutrinos, since they behave as relativistic particles up to rela-

tively small redshifts, we cannot make use of the Newtonian approximation of the
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Figure 2.3: Impact of neutrino mass on various distance measures as a function of redshift.
Top panels show the inverse Hubble distance measure c/H (left), the comoving distance
(center, accompanied by the luminosity distance - dashed line - and the angular diameter
distance - dot-dashed line) and the isotropic volume distance (right) for a ΛCDM Universe.
Bottom panels show the relative differences when including one massive neutrino species
with Mν = 0.2, 0.4, 0.6 eV, denoted by the dashed, dot-dashed and dotted lines respectively.

Boltzmann equation (eq. 1.18). Moreover, in this context it is better to make use

of conformal time dτ = dt/a as time coordinate, so that the relation between the

distribution function f and the total number of particle per phase-space volume is

dN = f(x,p, τ) d3x d3p. We will assume a flat Universe with metric:

ds2 = a2(τ)
[

dτ 2(1 + 2Ψ)− dxi dxjδij(1− 2Φ)
]
, (2.15)

where Ψ and Φ are two potentials responsible for time dilation and space contraction,

respectively, and we set c = 1. The metric written in eq. 2.15 corresponds to a

perturbed FLRW metric in the Newtonian gauge. Gauges arise when choosing a

correspondence between points in the physical space-time and the background: since

this choice is not unique, different gauges typically yield different values for the same

perturbation quantities and different growth. This in principle is not a problem, since

each observable is defined with respect to a precise coordinate system specified by the

corresponding measurement. Choosing the Newtonian gauge simplifies calculations

for the scalar perturbations that we are after, but for instance cannot be used to treat

vector or tensor perturbations.

To derive Boltzmann equation for a relativistic fluid we have to make a couple of

considerations. Despite the distribution function is written as a function of xµ and
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pµ, it is better to work with other quantities. We define the proper momentum Pi = P i

from the canonical one as pi = a(1 − Φ)Pi and introduce qi = aPi = (1 − Φ)pi. We

also renormalize the energy E2 = p2 +m2 to ε2 = a2(P 2 +m2) = q2 + a2m2. Finally,

from momentum conservation pµp
µ = m2 we get p0 = (1 + Ψ)ε.

Expanding the (conformal) time derivative in all its contribution, one gets:

∂f

∂τ
+

dxi

dτ

∂f

∂xi
+

dq

dτ

∂f

∂q
+

dγi

dτ

∂f

∂γi
=

(
∂f

∂τ

)

c

, (2.16)

where we have expanded q in its direction cosines qi = qγi. It is easy to show that

at zero-th order dxi/ dτ = pi/p0 ≈ qγi/ε and that dq/ dτ ≈ qΦ̇ − εγi∂iΨ, where

the dot here represents a derivative with respect to conformal time. Moreover, the

product involving the direction cosines is already a second order contribution and can

be discarded in linear PT.

In a FLRW Universe, the phase-space distribution of neutrinos is perfectly isotropic

and given by a Fermi-Dirac distribution:

f0(q) =
g/h3

P

eq/(akBTν) + 1
, (2.17)

only dependent on the modulus of q. We want to perturb eq. 2.17 by adding a

fluctuation f1, namely we substitute f = f0 + f1 in eq. 2.16 and keep only the first

order contributions. The result in Fourier space can be written as:

ḟ1 + ikµ
q

ε
f1 = −q∂f0

∂q

(
Φ̇− ikµ ε

q
Ψ

)
+

(
∂f1

∂τ

)

c

, (2.18)

where µ = k · q/kq. It is easy to verify that this equation is the relativistic equivalent

of eq. 1.18.

2.3.2 Free-streaming and linear power spectrum

The solution to eq. 2.18 can be written as:

f1(k, τ) = f1(k, τini)e
−ikµ q

ε
(τ−τini) +

+
ε

q

∫ τ

τini

dτ ′
[
−q∂f0

∂q

(
Φ̇− ikµ ε

q
Ψ

)
+

(
∂f1

∂τ

)

c

]
e−ikµ

q
ε
(τ−τ ′),(2.19)

which can be solved iteratively (see e.g. Mo et al. (2010)). The first term represents

the propagation of initial conditions, while the second term describes the dynamical

evolution of the perturbations due to gravitational interactions. We can easily relate

f1 to the neutrino density perturbation since δν(k, τ) ∝
∫

d3q f1 ∝
∫

dq dµ q2 f1.
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To answer the question about how δν evolves with time, let us consider the quantity

kqµ/ε. When this is large, the integrand function oscillates quickly, making it impos-

sible for δν to grow. There exists therefore a scale λfs below which neutrinos cannot

cluster. This is called free-streaming length and it is straightforward to show that:

λfs =

∫ t

0

dt′
v(t′)

a(t′)
. (2.20)

Its value can be either written in configuration or in Fourier space for each neutrino

species (e.g. Lesgourgues & Pastor (2006)):

λfs(z) = 7.7
1 + z

E(z)

1 eV

mν

Mpc/h (2.21)

kfs(z) = 0.82
E(z)

(1 + z)2

mν

1 eV
h/Mpc. (2.22)

After non-relativistic transition (eq. 2.12) the proper free-streaming scale increases as

∝ t1/3, i.e. slower than the expansion rate (∝ t2/3). As a consequence, for neutrinos

becoming non-relativistic during the matter dominated epoch, kfs passes through a

minimum knr at the time when this transition occurs:

knr = 0.018 Ω1/2
m

( mν

1 eV

)1/2

. (2.23)

The net effect of free-streaming is the following. Small-scale neutrino density pertur-

bations are damped because neutrinos cannot be confined in regions smaller than the

free-streaming length; on the other hand, at large scales and at late times, neutrinos

can be considered “cold” and therefore behave like CDM. In particular, modes with

k < knr are never affected by free-streaming and evolve identically to the ΛCDM case.

The growth of neutrino overdensities affect directly also the growth in CDM pertur-

bations. In fact, on scales k � knr the neutrino overdensity does not contribute to

the Poisson equation and consequently the source term in eq. 1.25 is smaller by a

factor (1−fν). It can be shown (see e.g. Lesgourgues & Pastor (2006)) that, while in

a massless neutrino Universe δc ∝ a in the matter dominated epoch, when neutrinos

have mass this becomes δc ∝ a1− 3
5
fν .

Therefore, neutrino free-streaming introduces a scale-dependent linear growth factor

for all components. Eisenstein & Hu (1998) found an approximate formula (accurate

to better than 1%) for the growth factors of CDM+b and total matter:

D1,cb(k, z) =

[
1 +

(
D1(z)

1 + yfs(χ, fν)

)0.7
]pcb/0.7

D1(z)1−pcb , (2.24)

D1,cbν(k, z) =

[
f

0.7/pcb

cb +

(
D1(z)

1 + yfs(χ, fν)

)0.7
]pcb/0.7

D1(z)1−pcb , (2.25)
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where D1(z) is given by eq. 1.26, fi = Ωi/Ωm,

pcb =
1

4

[
5−

√
1 + 24 fcb

]
≥ 0, (2.26)

yfs(χ, fν) = 17.2 fν
(
1 + 0.488 f−7/6

ν

)(Nmassiveχ

fν

)2

, (2.27)

χ =
k

h/Mpc

Tγ
2.7 K

Ω−1
m , (2.28)

and Nmassive is the number of massive neutrinos.

Of course, the matter power spectrum reflects the scale-dependence of the growth

factor. When adding massive neutrinos to the recipe, the total matter density per-

turbation (at redshifts relevant for large-scale structure) is given by:

δ = fcδc + fνδν , (2.29)

where for “c” we mean CDM+b. The linear total matter power spectrum is therefore

given by:

P lin(k) = f 2
cP

lin
cc (k) + 2fcfνP

lin
cν (k) + f 2

νP
lin
νν (k). (2.30)

On scales larger than knr neutrinos and CDM are indistinguishable from each other,

both contribute to the background expansion and to Poisson equation. Therefore we

expect the power spectra in ΛCDM and massive neutrino cosmologies to be equal.

The differences arise at small scales for several reasons. The first is related to the

fact that the radiation-matter equality takes place at different epochs. In fact, at

this time neutrinos are effectively relativistic and therefore enhance the amount of

radiation at the expenses of non-relativistic matter. In a Universe with massive

neutrinos with fixed Ωγ and Ωm, the radiation-matter equality occurs later, the shift

being given by aeq/a
ΛCDM
eq = (1 − fν)−1. At any time before neutrinos become non-

relativistic, the two models are still equivalent apart from a shift in the scale factor

δc[a] = δΛCDM
c [(1− fν)a].

After the non-relativistic transition, neutrinos anyway suffer from free-streaming on

small-scales: in this configuration, they contribute to the expansion rate but not to

gravitational clustering, therefore slowing down the growth of perturbations of CDM

and baryons. All in all, it can be shown that for scales k � kfs the suppression to the

linear total matter power spectrum in massive neutrino cosmologies is approximately

given by:
P lin(k)

PΛCDM,lin(k)
≈ 1− 8fν . (2.31)
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If one repeats the same calculation considering only the the CDM part, the result is

(Castorina et al. (2015)):
P lin

cc (k)

PΛCDM,lin
c (k)

≈ 1− 6fν . (2.32)

2.3.3 Non-linear growth

Investigating non-linearities in presence of massive neutrinos is a harder task than

it was in the ΛCDM case. In general, using PT yields similar if not slightly worse

results, because the condition under which the various kernels and growth factors are

computed is an EdS Universe. Therefore one usually relies on N -body simulations.

Adding neutrinos in simulations is a non-trivial task for several reasons. First of all,

because of initial conditions. What one would do in ΛCDM is to rescale a low-redshift

linear power spectrum to a high redshift using the linear growth factor (eq. 1.26).

Unfortunately this cannot be done in massive neutrino cosmologies, where the growth

factor is scale-dependent and only approximate formulae are known. Moreover, simu-

lations are often started at epochs where neutrinos are still relativistic (z ∼ 102) and

therefore contribute to the background expansion in a different way with respect to

the ΛCDM framework. Zennaro et al. (2017) proposed a way to keep these inconsis-

tencies under control, with a method that can return initial conditions as accurate as

∼ 1% at z = 99. Always related to initial conditions: thermal velocities of neutrinos

must be accurately implemented or non-convergent results will be found (Klypin et al.

(1993); Primack et al. (1995)).

Following the evolution of two different fluids is much more expensive in terms of

computational cost. For this latter problem, several approaches have been followed.

The quickest and less accurate way to include neutrinos in N -body simulations was

proposed by Brandbyge & Hannestad (2009): here neutrino perturbations are evolved

by solving the linear Boltzmann equation on a grid. Particle-based methods, where

neutrinos are treated as CDM particles with a large thermal velocity drawn from the

Fermi-Dirac distribution, were employed in a number of following works (Brandbyge

et al. (2008); Viel et al. (2010); Villaescusa-Navarro et al. (2013); Castorina et al.

(2015); Carbone et al. (2016)), also combined with techniques aiming at reducing shot

noise (Banerjee & Dalal (2016); Banerjee et al. (2018); Brandbyge et al. (2019)) and

cosmic variance (Villaescusa-Navarro et al. (2019)). A hybrid method that combines

grid-based and particle-based methods (used at early and late times, respectively) was

also proposed by Brandbyge & Hannestad (2010). An alternative approach by Ali-

Häımoud & Bird (2013) consists of following the evolution of CDM particles through
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N -body equations and neutrinos through Boltzmann equation but still accounting for

the mutual gravitational interaction. A final implementation worth mentioning is the

one by Dakin et al. (2019), where neutrinos are evolved according to the non-linear

Boltzmann equation in real space.

All in all, these models agree on a wide range of scales to a few percent. A peculiar

prediction that all these methods share is that, when taking the ratio of the non-

linear power spectrum in massive neutrino cosmologies with respect to the ΛCDM

counterpart, this acquires a spoon-like shape. This is visible in fig. 2.4. For three

different neutrino masses (0.2 eV in blue, 0.4 eV in red, 0.6 eV in green), we plot

the aforementioned ratio in the non-linear total matter case (solid lines), linear total

matter case (dashed lines) and linear CDM(+b) only case (dotted lines). The latter

two ratios reflect what we said in the previous Section in eqs. 2.31-2.32, respectively.

An analytical explanation of why the spoon-like feature appears in the non-linear

matter power spectrum was given by Hannestad et al. (2020) in terms of the halo

model. The spoon shape is generated in the transition region between the 2-halo

term and the 1-halo term: while the former is suppressed due to free-streaming, the

latter reflects the fact that neutrinos, once become non-relativistic, fall into CDM

halos, therefore relieving the difference with respect to ΛCDM. At higher redshifts,

the depth of the spoon increases, because neutrinos have larger thermal velocities, and

moves to smaller scales, since halos are on average less extended. Always Hannestad

et al. (2020) showed that the presence of this feature is robust with respect to the

choice of halo mass functions and halo profiles and that a simple halo model is able to

predict the shape of the spoon (both in depth and width) with an accuracy of ∼ 1%

on scales of k . 15 h/Mpc.

The modelling of the results of N -body simulations with massive neutrinos requires

a couple of clarifications. In the ΛCDM framework, halo/galaxy biases and halo

mass functions are defined with respect to the total matter density field. It has been

shown in a series of papers (Ichiki & Takada (2012); Villaescusa-Navarro et al. (2014);

Castorina et al. (2014)) that opting for doing the same in the context of massive

neutrino cosmologies spoils the universality of the mass function. These deviations

completely disappear if one assumes that the relevant field for the description of

clustering is the CDM+b one (δc): we refer to this feature as CDM prescription.

This has a consequence on how the non-linear matter power spectrum is computed

when using fitting formulae. Since the main density field in clustering is the CDM+b

one, the operator H (like HALOFIT) that transforms a linear power spectrum into its

non-linear counterpart should act only on the linear CDM+b one. Furthermore, as
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Figure 2.4: Suppression due to massive neutrinos in various power spectra at z = 0. Dif-
ferent colors label different Mν (a single massive species is assumed): blue for 0.2 eV, red
for 0.4 eV, green for 0.6 eV. Solid lines represent the non-linear suppression on the total
matter power spectrum according to eq. 2.33, whereas dashed and dotted lines do the same
for the linear total matter and CDM plus baryons power spectra, respectively.

was shown by Castorina et al. (2015), non-linearities in the cross (Pcν) and neutrino

power spectra (Pνν) are expected to be sub-percent effects. Therefore, the non-linear

total matter power spectrum in neutrino cosmologies can be written as:

P nl(k) = f 2
c H

[
P lin

cc (k)
]

+ 2fcfνP
lin
cν (k) + f 2

νP
lin
νν (k). (2.33)

Notice that this procedure is different from the one proposed by Mead et al. (2016).

The parameters proposed in their Section 3.3 are the values that best suit the massive

neutrino simulations by Massara et al. (2014). If one instead wants to follow CDM

prescription and use eq. 2.33, the operator H must be used with the parameters that

best fit CDM only simulations, i.e. the ones given in their Table 1.

The CDM prescription was used in Massara et al. (2014) to perform an interesting

extension of the halo model in order to include massive neutrinos. In this picture,

all the three spectra (cc, cν and νν) are split into 1-halo and 2-halo terms, with

neutrinos that are divided into a linear component that free-streams and a clustered

component with its own universal density profile. All in all, the neutrino halo model
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can reproduce the total matter power spectrum with an agreement of ∼ 10% at large

and small scales, but still suffers from problems in the transition scales, where the

accuracy only reaches 20− 30%.

2.4 Impact on large-scale structure observables

We turn now our attention to the impact of neutrinos on the observable we will deal

with in this work. In particular, we will limit ourselves to the cases of clustering of

biased tracers (halos or galaxies) in Fourier space, of the BAOs in the 2PCF and of

cosmic shear.

2.4.1 Clustering of biased tracers

As we mentioned in the last Chapter, describing the clustering of a given tracer g

consists of finding a functional, depending on some bias parameters, that relates the

underlying density field to the one of the tracer chosen. We also said that in massive

neutrino cosmologies the fundamental field for clustering is no longer total matter,

but rather the CDM+b one. Therefore, assuming a linear constant bias relation, eq.

1.50 transforms into:

δg = b1 δc. (2.34)

However, dealing with biases in this new context is much more subtle than in the

ΛCDM case: the reason is once again neutrino free-streaming. In fact, in the ΛCDM

model halo formation is a completely local process (Kaiser (1984); Bardeen et al.

(1986); Coles (1993); Mann et al. (1998)). On the contrary, in the massive neutrino

picture, neutrinos can cover cosmological distances in relatively short time-scales,

modifying the gravitational dynamics at different times up to large scales and thus

making structure formation a non-local process. Therefore, the halo bias can become

scale-dependent already at linear order. This feature was first predicted in the general

case of hot DM (Hui & Parfrey (2008); Parfrey et al. (2011)) and then applied to

the massive neutrino case (LoVerde (2014a); Chiang et al. (2018)). Qualitatively

speaking, the bias of a DM halo of a given mass M can be predicted through the

peak-background split (see Desjacques et al. (2018); LoVerde (2014b)):

b1(M,k) = 1 +
∂ ln

(
dn
dM

)

∂δsc

∂δsc

∂δc,`(k)
, (2.35)

where dn/ dM is the halo mass function, δsc ≈ 1.686 is the overdensity for spherical

collapse and δc,` is a long-wavelength perturbation in the CDM+b fluid. The latter
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derivative can be computed by following a two-fluid spherical collapse calculation in

which neutrino perturbations are treated linearly while a spherical top-hat shell of

CDM+b is collapsing. Of course, this term is responsible for the scale-dependence

of the linear bias. Putting all this information together, the tracer power spectrum

stopping at leading order in bias in massive neutrino cosmologies can be written as:

Pg(k) = b2
1(k)Pcc(k), (2.36)

where now the bias function can be expanded in even powers of k (for parity reasons):

b1(k) = A+Bk2 + ...

The very first confirmation of this feature from N -body simulations came from Chiang

et al. (2019), where a scale-dependent linear bias was modelled through a redshift-

and cosmology-dependent function f(k) taken from the separate Universe prediction

(Wagner et al. (2015)). However, despite the importance of these results, this effect

is extremely hard to detect in real data: to obtain a significant result with a small

amount of simulations, fν was enhanced to 0.1 with 28 degenerate massive neutrino

species each with mν = 0.05 eV.

2.4.2 BAOs in the 2PCF

Another relevant and sizeable effect of neutrinos on large-scale structure observables

is the one on the 2PCF at BAO scales and its evolution in the non-linear regime. At a

fixed redshift, this is expected not much because of free-streaming, that barely affects

these large scales, but rather because keeping Ωm fixed while increasing Mν makes

Ωb/Ωc change as well. We will dig more in detail the aspect of redshift evolution in

Chapter 3: here we just want to give a qualitative explanation of the main differences

in the 2PCFs in ΛCDM and in massive neutrino cosmologies. In the top panel of

fig. 2.5 we plot the linear CDM+b 2PCFs for a ΛCDM model (black dashed lines)

and for three different neutrino masses (one single massive species of masses 0.2, 0.4,

0.6 eV in blue, red and green, respectively) at z = 0. Their non-linear counterparts

are represented by the solid lines and have been computed applying the HALOFIT

operator by Mead et al. (2015) and the BAO smoothing like in Tegmark et al. (2006).

The bottom panel shows, with the same color code, the ratio of the 2PCFs with

massive neutrinos with respect to the ΛCDM one. Of course everything that will be

said here holds true for the 2PCF of biased tracers as long as we keep our simple

linear bias model of eq. 2.34.

Let us start from the linear 2PCF: the different baryon-to-CDM density ratio causes

a shift in the peak of the BAOs. This effect is however small, . 0.3% for Mν < 0.6
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Figure 2.5: Impact of neutrino mass on the 2PCF of CDM+b at z = 0. The top panel
shows both the linear (dashed lines) and the non-linear (solid lines) 2PCFs for different
neutrino masses: ΛCDM in black, 0.2 eV in blue, 0.4 eV in red, 0.6 eV in green. A single
massive neutrino species is assumed. The bottom panel shows the ratios of all the above
said 2PCFs with respect to the ΛCDM case.

eV. The largest difference comes in the region of the dip, where we have amplitude

discrepancies that can get as large as 50% for Mν = 0.6 eV.

As far as the non-linear 2PCF is concerned, the differences here come from the fact

that the damping factor that smooths the BAO feature is different. We can estimate

this as follows. While in the plot the non-linear 2PCF is computed as the Fourier

transform of the non-linear CDM+b power spectrum with smoothed BAO, a fair
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approximation in the BAO region, motivated by RPT: (Crocce & Scoccimarro (2006)),

can be written as (e.g. Peloso et al. (2015); Noda et al. (2017))

ξRPT
cc (r) ≈

∫ ∞

0

dk
k2 P lin

cc (k)

2π2
e−k

2σ2
v j0(kr), (2.37)

where σ2
v is given by eq. 1.47. We see therefore that when adding massive neutrinos,

the damping factor and therefore the BAO smoothing is smaller. Moreover, the

differences with respect to ΛCDM become more scale-independent, even though still

of the order ∼ 10− 25% for Mν = 0.6 eV.

The differences just described will constitute the base of the analysis we will perform

in Chapter 3. There, rather than on amplitudes, we will focus on the shifts induced

by the scale-dependent growth on the BAO peak and dip scales and in turn to the

mid-point between them, dubbed the linear point.

2.4.3 Cosmic shear

Another observable we turn our attention to is cosmic shear. The shear power spec-

trum in the Limber’s and flat sky approximations is given by eq. 1.60. From that

formula we see that there are several points where neutrino effects can enter.

The first is the Hubble factor H(z), whose impact is however very small. From the

bottom left panel of fig. 2.3 we can see that the impact of massive neutrinos on c/H

is well below 0.01% for all the redshifts relevant for current and future weak lensing

surveys (z . 3) for any neutrino mass. The reason is because massive neutrinos at

these small redshifts are indistinguishable from CDM or baryons, since their param-

eter of state wν is close to zero. The same is true for the comoving distance χ(z),

where the impact of massive neutrinos is even smaller (bottom center panel of fig.

2.3) and for the window functions (eq. 1.61). Assuming that only these 3 quantities

vary when switching to massive neutrino cosmologies, the difference with respect to

ΛCDM is well below 0.1% for future surveys.

Once again what changes completely is the power spectrum. In cosmic shear the

total matter power spectrum is involved, computed with the prescription of eq. 2.33.

The spoon-shape suppression we discussed in Section 2.3.3, integrated along the line

of sight, damps the shear power spectrum that can reach 40 % for Mν = 0.6 eV.

This is visible from fig. 2.6, where in each panel we plot the ratio of the shear power

spectrum of a given pair of redshift bins with respect to the ΛCDM one. Different

colors label the different contribution to the measured shear (eq. 1.62): blue for the

cosmological signal GG, red for the pure intrinsic alignment signal II and green for
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Figure 2.6: Impact of massive neutrinos on the shear power spectrum. The same settings of
fig. 1.3 (redshift bins, galaxy distribution and cosmological parameters except for neutrino
mass) have been used here. In each panel we show the suppression on the measured shear
power spectrum (black lines), split in its contributions (GG in blue, GI in green, II in
red), with respect to the ΛCDM case. Solid lines show such suppression for Mν = 0.2 eV,
dashed lines for 0.4 eV and dotted lines for 0.6 eV. Grey bands show multipole regions likely
excluded in upcoming surveys. Gold shaded areas represent cosmic variance for a survey
with fsky = 0.366.

the cross contribution GI, black for the sum of all of them. Different line styles

instead refer to different neutrino masses: solid for 0.2 eV, dashed for 0.4 eV and

dotted for 0.6 eV. The galaxy distributions, bins and cosmology used are the same of

fig. 1.3; like always, every time we increase Mν , we decrease Ωc. Also here the grey

bands are the multipole ranges which will likely be excluded by future surveys. The

gold regions represent cosmic variance for a survey with fsky = 0.366: every time a

line falls outside this region, a neutrino mass detection is in principle possible. We

will deal more in detail with this plot in Chapter 4, when we investigate whether

this effect on the shear power spectrum can be disentangled from baryonic processes

which can modify matter distribution on halo scales and which go under the name of

baryon feedback.

52



2.4.4 Other large-scale structure observables

We briefly report here the impact of neutrino mass on the observables mentioned in

Section 1.5.3. There we said that the tightest constraints on neutrino mass come

from the combination of Planck with Ly-α forest data. The main reason is that the

flux power spectrum can probe the smallest scales, where the impact of neutrinos is

large. The combination of CMB and Ly-α forest can provide constraints in a very

efficient way on all cosmological parameters, but especially on Mν , because of the

complementary degeneracy patterns in the Mν −Ωm and Mν − σ8 planes (Palanque-

Delabrouille et al. (2015b)).

On the other hand, also intensity mapping constitutes a promising new cosmologi-

cal probe for constraining neutrino mass (e.g. Loeb & Wyithe (2008); Pritchard &

Pierpaoli (2008)), because of its trivial dependence on the total matter power spec-

trum (see eq. 1.65). The impact of massive neutrinos on this observable was studied

with N -body simulations by Villaescusa-Navarro et al. (2015), focusing on the post-

reionization Universe and in both linear and non-linear regimes. A Fisher matrix

forecast analysis was also performed: in particular, combining a deep (3 < z < 6) and

narrow survey with SKA1-LOW, a wider and deep survey (z < 3) with SKA1-MID,

Planck data and priors from stage IV spectroscopic galaxy surveys, the predicted

uncertainty on the sum of neutrino mass is of order 0.06 eV at 95 % confidence level,

yielding at least a 2-σ detection if neutrinos are distributed in the NH.
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3
The effects of massive neutrinos on the
linear point of the correlation function

3.1 BAOs, linear point and massive neutrinos

As we saw in previous Chapters, the competing effects of gravity and radiation pres-

sure in the primordial plasma, where photons and baryons were coupled through

Thomson scattering, gave rise to acoustic waves that propagated until the epoch of

recombination. Today we observe the leftover of this interaction, the BAOs, either

in Fourier space, as wiggles in the power spectrum of matter or its tracers, or in

configuration space as a peak in the 2-point clustering correlation function (2PCF)

(Cole et al. (2005); Eisenstein et al. (2005)). More recently, full-shape analyses of

the 2PCF have been performed for cosmological parameter estimation (Sánchez et al.

(2009, 2012, 2013, 2017); Ivanov et al. (2019); Philcox et al. (2020)).

BAOs became an important tool in cosmology because in principle they provide a

powerful standard ruler: they have been shown to be very robust against systematics

(see e.g. Ross et al. (2017)) that critically affect other observables, like the full-shape

power spectrum. They allow us to measure the acoustic scale, a quantity that is

independent of the spatial geometry of the Universe, the primordial fluctuation pa-

rameters, late-time acceleration and the choice of observed tracers (e.g. galaxies)

of the underlying density field. In other words, BAOs can be used to map the ex-
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pansion history of the Universe through estimates of the Hubble parameter and the

angular-diameter distance, exploiting the Alcock-Paczynski (AP) distortions (Alcock

& Paczynski (1979)). Unfortunately, there are a few effects that complicate the use

of BAOs: non-linearities in the late Universe affect the 2PCF and in particular the

position of the BAO peak (Desjacques et al. (2010); Baldauf & Desjacques (2017);

Bardeen et al. (1986)), that is the originally proposed BAO standard ruler (Eisenstein

et al. (2005)). This spoils the standard ruler nature of the peak (Smith et al. (2008);

Sánchez et al. (2008)).

Current analyses circumvent this problem by fitting the data with a theoretical tem-

plate of the 2PCF parametrized in terms of the linear 2PCF and some nuisance

parameters catching the smaller scale behavior. The most widely used method to es-

timate cosmic distances from the 2PCF in the BAO region (see e.g. Seo et al. (2008);

Xu et al. (2012); Anderson et al. (2014)) consists of fixing the cosmological parameters

to the fiducial ΛCDM values used to generate the mock catalogs from which the co-

variance matrix is computed. The non-linear damping parameter, which smooths the

BAO feature at low redshift, is also estimated from the mocks and kept fixed in the

MCMC analysis, checking a posteriori that it does not affect the measurement of the

AP distortion parameters. This method has been shown to accurately fit the 2PCF

and to return unbiased distance measures. Unfortunately, it might suffer from some

drawbacks. First, the value of the damping parameter is tracer dependent (Bardeen

et al. (1986); Veropalumbo et al. (2016)), and fixing it leads to unjustified claims for

precision and accuracy. These assumptions could result in an underestimate of the

distance error. Second, mock catalogs are typically generated using a ΛCDM model,

therefore it is also not precisely clear how these measurements apply to non-standard

cosmology scenarios (e.g. non-flat geometries and evolving dark energy). Putting

together all these effects, employing this method might underestimate the distance

errors by up to a factor of 2 (Anselmi et al. (2018a)).

In recent years, a new potential standard ruler has been proposed: the linear point

(LP), defined as the mid-point between the BAO peak and the dip of the 2PCF

(Anselmi et al. (2016, 2018c,b,a); O’Dwyer et al. (2020)). The LP has been shown

to be weakly affected by gravitational processes. First of all, it is insensitive to the

primordial fluctuation amplitude As and the scalar spectral index ns (Anselmi et al.

(2016); O’Dwyer et al. (2020)). Second, the original analysis of Anselmi et al. (2016)

found that late-time non-linearities move the BAO peak towards smaller scales and

the dip in the opposite direction, thus leaving the LP nearly in the same position.

Similarly, redshift-space distortions (RSD) do not influence the position of the LP,
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as their effect on the peak and the dip nearly cancels. Finally, the position of the

LP is also nearly unaffected by scale-dependent halo bias. The stability of the LP

can be ascribed to the near-antisymmetry of the 2PCF with respect to the LP itself,

limiting the downward drift of the LP to ∼ 1% through cosmic ages. Given the

secular nature of that shift, to partially remove this non-linear effect, Anselmi et al.

(2016) introduced a simple redshift-independent 0.5% correction to the LP estimated

from real or simulated data:

rLP =
rd + rp

2
× 1.005. (3.1)

The LP is identified by first finding the dip and the peak (by solving dξ
dr

= 0) and it is

subsequently used to estimate the isotropic volume distance to the redshift considered.

Finally, the value of such distance is compared to the theoretical predictions from

different models in order to constrain the cosmological parameters.

Given what said above, a cosmological-model-independent fit is sufficient to recover

the LP position without introducing systematic biases. LP analyses thus employ

a model-independent approach to estimate the LP position from real or simulated

clustering data. In particular, it has been shown that a simple polynomial is enough

to obtain an unbiased estimate for the LP (Anselmi et al. (2018b)), with a correct

and straightforward propagation of the uncertainties.

So far, the LP has been tested only in the ΛCDM framework, with no investigation

of the possible impact of massive neutrinos. As already shown in detail in Chapter

2, massive neutrinos affect the clustering of matter both at the linear and non-linear

levels. They decouple from the baryon-photon plasma in the very early Universe,

when they are still relativistic. Due to their high thermal velocities, they cannot

cluster, at linear order, on regions smaller than their so-called free-streaming scale

(eq. 2.21). From flavor oscillation data, we know that at least two of them are

massive enough to become non-relativistic during matter domination. In this regime,

the free-streaming scale passes through a minimum, given by eq. 2.23, a scale which

is larger than the ones where non-linear effects show up even at present time. All

in all, the growth of structures proceeds like in the ΛCDM case for k < knr, but

it is greatly affected by neutrino free-streaming at smaller scales, where the density

perturbations grow more slowly. The net result is that the growth of perturbations

becomes scale-dependent, with a substantial impact on the matter power spectrum

and the 2PCF. Therefore, the position of the peak, dip and LP in the 2PCF could be

affected by the value of the neutrino masses, even before the onset of gravitational

non-linearities.
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In a similar fashion, Baumann et al. (2019) made the first claim of a neutrino-induced

phase shift of the BAO in the BOSS DR12 galaxy power spectrum. However, in this

and a related analysis (Baumann et al. (2018)) several non-linear effects are incorpo-

rated using phenomenological models of the non-linear 2PCF, with the inherent risk

of being subject to the limitations of template-based BAO analyses (see e.g Anselmi

et al. (2018a); O’Dwyer et al. (2020)). In this regard the LP could provide a different

route to detecting the neutrino mass.

This Chapter reports the work exposed in Parimbelli et al. (2020), where the impact

of massive neutrinos on the LP is investigated. We start by studying how the scale-

dependence clustering induced by massive neutrinos impacts the peak, dip and LP

positions in linear theory. We then investigate the effects of non-linearities by using

state-of-the-art N -body simulations. We focus on the behavior of the LP in the 2PCF

for both cold dark matter (CDM) and halos in real space, leaving the analysis of RSD

for future work. The main goal of this work is to investigate whether the neutrino

mass retains or spoils the features of the LP that are crucial when employing it as a

standard ruler. We discuss in the end how the LP could be applied to constrain the

cosmological energy densities and the neutrino masses.

We organize the discussion in the following way. In Section 3.2 we describe the

methodology we employ, i.e. the simulation sets and the LP estimation procedure in

all its details. In Section 3.3 we present and discuss our results.

3.2 Methodology

The goal of this work is to study the evolution of the LP through cosmic ages, in par-

ticular assessing whether the impact of massive neutrinos spoils its nature of standard

ruler. To this end, we first investigate the effect of the scale-dependent growth in linear

theory. We then move to the non-linear analysis, employing N -body simulations that

incorporate massive neutrinos as an extra set of particles. The observables we use are

the CDM and halo 2PCF in real space, while we leave the impact of RSD for future

work. To estimate the LP position, we fit the 2PCFs with a cosmology-independent

polynomial function. Note that we do not consider the CDM-plus-neutrinos (i.e. to-

tal matter) 2PCF as an observable; because of neutrino free-streaming scale, it was

shown (Ichiki & Takada (2012); Villaescusa-Navarro et al. (2014); Castorina et al.

(2014)) that the main driver of galaxy formation is the CDM+b component rather

than total matter. Using the total matter density as the fundamental field would

spoil the universality of the mass function (proven by Jenkins et al. (2001); Reed
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et al. (2003)) and would give rise to a strongly scale-dependent halo bias at the

largest scales. Therefore the CDM+b field is expected to be the closest underlying

field of the tracers we observe in the Universe1. Furthermore, Vagnozzi et al. (2018)

showed that, in upcoming surveys, not accounting for a scale-dependent bias when

using total matter as fundamental field will lead to substantial shifts in the posterior

of Mν as well as of other cosmological parameters which are correlated with it.

In this Section, we first explain how we perform the linear analysis, then we present the

adopted simulation sets, together with the method used to measure the correlation

functions for both CDM and halos. We next describe the procedure we follow to

estimate the LP best fit and uncertainty, fitting a model-independent differentiable

function to the 2PCF data and errors. We also compare the 2PCF covariance matrix

estimated from N -body to its linear Gaussian prediction.

3.2.1 Effects of massive neutrinos in linear theory

The fundamental feature that makes the LP a standard ruler is that its position is

nearly redshift-independent in comoving coordinates (Anselmi et al. (2016, 2018a)).

Anselmi et al. (2018a) explained that the LP can be used to estimated cosmologi-

cal distances for ΛCDM and for cosmological models that do not introduce a scale-

dependent growth, i.e. cosmologies that retain the LP redshift-independence. In

order to understand whether the LP is a standard ruler for massive neutrino cos-

mologies we must assess the impact of massive neutrinos on the LP position, first in

linear theory and then taking into account late-time non-linearities.

To investigate the redshift-dependence of the LP in linear theory for different neutrino

masses, we use the Boltzmann solver CLASS (Lesgourgues (2011); Blas et al. (2011);

Lesgourgues & Tram (2011)). We obtain the linear CDM power spectrum P lin
cc (k, z)

at redshift z and compute the spatial derivative of the real-space 2PCF through:

dξlin

dr
(r, z) = − 1

2π2

∫
dk k3P lin

cc (k, z) j1(kr), (3.2)

where j1(x) = (−x cos(x) + sin(x))/x2 is the first-order spherical Bessel function. We

calculate the dip, peak and linear point positions by applying a root-finding routine

to the condition dξlin

dr
(r, z) = 0 (without the 0.5% correction mentioned in eq. 3.1).

Notice that the same procedure is used to compute dip and peak for the non-linear

2PCF.

1From here on in this Chapter, when mentioning the CDM field, we will refer to the CDM+b
one.
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3.2.2 Simulations

In this work, we employ two sets of N -body simulations with massive neutrinos. As

usual in N -body simulations, baryons are treated as cold dark matter, hence the CDM

N -body particles are meant to describe the cold dark matter plus baryons component.

The first simulation suite is a new subset of the “Dark Energy and Massive Neutrino

Universe” (DEMNUni) simulations, first presented in Castorina et al. (2015) and

Carbone et al. (2016). The complete DEMNUni set encloses simulations with different

cosmologies, volume and mass resolution (Schuster et al. (2019); Verza et al. (2019);

Kreisch et al. (2019); Bel et al. (2019)) and can be regarded as the state-of-the-art

simulations in terms of the latter (Ruggeri et al. (2018)). This new suite consists of

50 realizations of two different models, a ΛCDM and a νΛCDM with three degenerate

neutrino species of total mass Mν = 0.16 eV. The other parameters are set to Ωm =

0.32, Ωb = 0.05 h = 0.67, ns = 0.96, As = 2.1265 × 10−9. The latter parameter

implies a value for σ8 = 0.833 and 0.792 for the ΛCDM and for the massive neutrino

cases, respectively.

The new DEMNUni set, considered in this work, has been run using the tree-particle

mesh-smoothed particle hydrodynamics (TreePM-SPH) code Gadget-III, a modifica-

tion of Springel (2005) and Viel et al. (2010) that accounts for the presence of massive

neutrinos. The simulation follows the evolution of Nc = 10243 CDM particles and,

when present, Nν = 10243 neutrino particles, in a cubic box of size L = 1000 Mpc/h,

from z = 99 to present age. Initial conditions for models with massive neutrinos are

obtained via the rescaling method developed in Zennaro et al. (2017). With the cos-

mological parameters above, the mass of a CDM particle is M c
P ≈ 8.2× 1010 M�/h,

while when neutrinos are present each particle has a mass of Mν
P ≈ 9.9× 108 M�/h.

The softening length has been set to ε = 20 h−1 kpc. With these features, DEMNUni

are suitable for the analysis of several cosmological probes, from galaxy clustering to

weak lensing. Halos and sub-halos are identified via the Friends-of-Friends (FoF) and

the SUBFIND algorithms respectively, both included in Gadget-III (Springel et al.

(2001); Dolag et al. (2009)), setting the linking length to 1/5 of the mean inter-particle

separation. The minimum number of particles to identify a parent halo is 32, so that

the minimum halo mass is 2.6× 1012 M�/h. In this work we consider 5 snapshots at

z = 0, 0.5, 1, 1.5, 2.

We also employ a part of the new Quijote set (Villaescusa-Navarro et al. (2019)). Like

the DEMNUni, these simulations are run with the TreePM code Gadget-III. However,

the initial conditions are set at zin = 127 (also here using the presciption by Zennaro
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DEMNUni Quijote

Realizations fiducial analysis (per model) 50 100

Boxsize (Mpc/h) 1000 1000

Snapshots (z) 0, 0.5, 1, 1.5, 2 0, 0.5, 1, 2, 3

CDM particles 10243 5123

Neutrino particles 10243 5123

Neutrino mass (eV) 0, 0.16 0, 0.1, 0.2

Minimum halo mass (M�/h) 2.6× 1012 1.3× 1013

Table 3.1: Different specifics of the two simulation sets employed in this work.

et al. (2017)), and the mass resolution is 8 times lower, with Nc = 5123 CDM particles,

and Nν = 5123 neutrinos (when present), in a box of 1000 Mpc/h on each side. The

fiducial cosmology of this set has Ωm = 0.3175, Ωb = 0.049, h = 0.6711, ns = 0.9624,

σ8 = 0.834. Neutrinos are considered to be of three different species with degenerate

masses. This means that a dark matter particle has a mass of M c
P ≈ 6.5×1011M�/h,

while neutrino particles have Mν
P ≈ 1.6× 1010M�/h ×Mν [eV]. Dark matter halos,

with a minimum mass of 1.3× 1013M�/h (32 CDM particles), are identified through

the FoF algorithm with linking length parameter set to 1/5 of the mean inter-particle

separation. Also in this case, we use 5 different snapshots at z = 0, 0.5, 1, 2, 3.

Given the number of Quijote realizations available, we do not use the full set. We

included just the first 500 realization of the ΛCDM model plus the 500 standard

realizations corresponding to a value of Mν of 0.1 and 0.2 eV. We do not use at

all the 500 realizations with Mν = 0.4 eV. This is because in the Quijote set, the

amplitude of the power spectrum is described by σ8 (rather than As), which is kept

fixed to 0.834. When Mν = 0.4 eV, the large-scale amplitude is so large that late-time

non-linearities completely smear out the BAO peak in the 2PCF, making our analysis

impossible to perform.

These 500 simulations have been used to test the accuracy of an analytic Gaussian

covariance matrix for the 2PCF (see e.g. Grieb et al. (2016)), while the LP estimation

procedure has been performed only on the first 100 realizations.

Tables 3.1 and 3.2 report the specifics of the two simulations sets just described and

the average number of halos per realization (or equivalently per (Gpc/h)3).
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# Halos: DEMNUni # Halos: Quijote

ΛCDM 0.16 eV ΛCDM 0.1 eV 0.2 eV

z = 3 4.9× 103 5.0× 103 5.5× 103

z = 2 6.1× 105 5.5× 105 4.4× 104 4.4× 104 4.4× 104

z = 1.5 1.1× 106 9.9× 105

z = 1 1.4× 106 1.3× 106 2.0× 105 2.0× 105 2.0× 105

z = 0.5 1.8× 106 1.7× 106 3.1× 105 3.1× 105 3.1× 105

z = 0 1.9× 106 1.9× 106 4.1× 105 4.1× 105 4.1× 105

Table 3.2: Average number of halos per realization, per snapshot and simulation set.

3.2.3 Estimating the 2PCF from simulations

For each snapshot and each realization, we compute the 2PCF for CDM and for

halos. As explained at the beginning of Section 3.2, we exclude neutrino particles

from the computation of the 2PCF for observational reasons. This is also convenient

from the theoretical point of view – as widely explained in e.g. Villaescusa-Navarro

et al. (2014); Castorina et al. (2014); Costanzi et al. (2013), in massive neutrino

cosmologies, if we consider the CDM density field we obtain a universal halo mass

function and an almost scale-independent linear halo bias. We recall that we limit

ourselves to the real space 2PCF, leaving RSD analysis for future work.

The 2PCF is computed using the FFT estimator introduced in Taruya et al. (2009)

and implemented in the Pylians codes 2, in which the density field is computed on a

grid and convolved with itself through a double 3-dimensional Fast Fourier Transform

(FFT):

ξ̂sim
X (r) =

1

Nmodes

∑

rmin<|r|<rmax

FFT−1
[
|δX(k)|2

]
(r), (3.3)

where X can be either ‘c’ for CDM or ‘h’ for halos. The density field δX is computed

using a Cloud-In-Cell mass-assignment scheme. The bin edges rmin and rmax are fixed

by the thickness of the grid: in this work we set the latter to 1024, corresponding to

a bin size of roughly 1 Mpc/h.

In Fig. 3.1 we plot the 2PCF of CDM as measured with the method just described.

For an easy comparison, we plot the quantity r2ξ(r)/σ2
8D

2
1(z) for the first 50 real-

izations and for the redshifts in common between the two simulation sets. We split

2https://github.com/franciscovillaescusa/Pylians
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the measurements for ΛCDM from the ones with massive neutrinos. Dark-red and

dark-blue dots in the left-hand panels represent the 2PCF for the ΛCDM model of

the DEMNUni and the Quijote simulations, respectively. In the right-hand panels we

show the massive neutrino models of the DEMNUni in light red and of the Quijote

in blue (for Mν = 0.1 eV) and light blue (0.2 eV). Each measurement is accompanied

by the standard error on the mean as uncertainty.

We would like to underline a subtle difference between the measurements of the two

sets. As already mentioned in Section 3.2.2, in the Quijote simulations the parameter

ruling the overall amplitude is σ8 and not As. Therefore we expect a larger flattening

of the BAO feature at late times for a fixed neutrino mass. This is clearly visible

in Fig. 3.1, where (for instance in the Quijote 2PCF for Mν = 0.1 eV – blue points

in the right panels) the relative height between the dip and the peak is smaller than

for the analogous DEMNUni 2PCF, despite in the latter the neutrino mass is even

higher (0.16 eV). This has important consequences on the estimate of the LP and in

particular of its uncertainty. We will discuss this in detail in Section 3.3.4.

3.2.4 Estimating the linear point from simulations

In Anselmi et al. (2018b) it was shown that the LP position can be extracted from N -

body simulations, mock and real galaxy data in a cosmology model-independent way.

The proposed procedure exploits a simple polynomial function to smooth the binned

2PCF data and estimate the zero-crossings of its first derivative. This polynomial

function is written as:

ξfit
X (r) =

N∑

n=0

anr
n (3.4)

where the degree of the polynomial N must be chosen following Anselmi et al. (2018b).

The best-fit parameters are found by maximizing the log-likelihood function given by:

lnL ∝ −1

2

∑

i,j

[
ξfit
X (ri)− ξ̂sim

X (ri)
] [

Cov−1
X

]
ij

[
ξfit
X (rj)− ξ̂sim

X (rj)
]
, (3.5)

where ξ̂sim
X (r) is the correlation function estimated from the simulation for either

CDM or halos (X = c, h), eq. 3.3, CovX,ij is the corresponding covariance matrix,

and ξfit
X (r) is the polynomial employed to estimate the LP.

We recall that, following eq. 3.1, the LP is defined as the mid-point between the

peak and the dip in the 2PCF plus a 0.5% correction. We need to propagate the

uncertainty from the fitted parameters of the 2PCF to the position of the peak and

the dip, and finally to the LP. To do so, we write the LP position as a function of the
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Figure 3.1: 2PCF of CDM from the DEMNUni and the Quijote sets, as measured with
eq. 3.3. We show here, only for the common redshift between the two sets, the 2PCF
multiplied by r2 and divided by the σ2

8 and the growth factor for ΛCDM squared in order
to make it easier a comparison between different sets. To facilitate the comparison, we
plot the mean of the 50 DEMNUni and of the first 50 Quijote realizations, each with an
uncertainty corresponding to the standard error on the mean. In the left panels we display
the two ΛCDM cases, with the DEMNUni in dark red and the Quijote in dark blue; the
right panels are left for the massive neutrino models, with the DEMNUni in light red and
the Quijote with 0.1 eV (0.2 eV) in blue (light blue).

polynomial coefficients of eq. 3.4 and expand the result in the vicinity of the best-

fit parameters. Assuming that the uncertainties in the ai’s are small (as we verify

numerically a posteriori), we can stop at first order:

rLP(a) ≈ rLP(ā) +
∑

i

∂rLP(ā)

∂ai
(ai − āi). (3.6)

The error on the LP is the variance of the first-order term, namely

σLP =

{∑

i,j

∂rLP

∂ai
[Cov(ā)]ij

∂rLP

∂aj

}1/2

, (3.7)

where Cov(ā) = 〈(ai − 〈ai〉)(aj − 〈aj〉)〉 is the covariance matrix of the parameters.

The derivative of the LP position with respect to the parameters is computed with
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the 5-point stencil method, namely:

∂rLP

∂ai
≈ −rLP(ai + 2ε) + 8rLP(ai + ε)− 8rLP(ai − ε) + rLP(ai − 2ε)

12ε
. (3.8)

The step ε must be taken in such a way as to guarantee numerical convergence of

the derivative. For every case, we choose ε = {10−6, 10−7, 10−8} ai as step sizes and

compare the resulting errors on the LP. If, for each choice of ε, the computed numerical

derivatives agree within 1%, we say that the derivative has converged and we take the

value for σLP corresponding to ε = 10−7ai. When performing this operation, Cov(ā)

is kept fixed, since the mean values of the ai do not change in this procedure.

The 2PCF covariance matrix, needed to minimize the log-likelihood defined by eq.

3.5, is computed analytically, to avoid nuisances coming from the one computed

directly from either set of simulations. Since the scales we are interested in are just

mildly non-linear, we can still use a Gaussian-density-field approximation to build the

2PCF covariance matrix. We follow the treatment developed, employed, and tested

in previous works (Smith et al. (2008); Sánchez et al. (2008); Smith (2009); Xu et al.

(2012); Grieb et al. (2016); Lippich et al. (2019); Anselmi et al. (2018a)) to obtain a

smoothed binned covariance matrix:

CovX,ij =
2

Nreal L3

∫ ∞

0

dk k2

2π2
j̄0(kri) j̄0(krj)

[
PX(k) +

1

n̄

]2

, (3.9)

where 1/n̄ is the Poisson shot-noise term, L is the box size of the simulations, Nreal

is the number of realizations (since our observed points are the mean correlation

functions) and j̄0(x) is a band-averaged spherical Bessel function. In particular, if a

bin is centered on r and its edges are (r1, r2):

j̄0(kr) =
r2j1(kr)|r2r1

r2k∆r
[
1 + 1

12

(
∆r
r

)2
] (3.10)

with ∆r = r2 − r1, and j1(x) is the 1st-order spherical Bessel function.

The shot-noise term is equal to L3/Nc in the case of CDM, while for halos it is taken to

be L3/N̄h, where N̄h is the average number of halos at the single snapshot considered

(see Table 3.2). On the other hand, eq. 3.9 contains the power spectrum of the tracer

PX(k), which is a priori unknown. To avoid recomputing the covariance matrix at

each step, we adopt the following prescription. The only parameter that plays an

important role in the covariance is the bias factor. Therefore, when X = c we use the

linear CDM power spectrum, while for X = h we assume a simple linear-bias model

Phh(k) = b2P lin
cc (k). The bias factor is then found by fitting the halo power spectrum
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Figure 3.2: Covariance of the 2PCF in our simulations for the ΛCDM at z = 0. The left
panels refer to the DEMNUni set, while the right panels show the same but for the Quijote
simulations. Here we rescale the covariance by the number of realizations, i.e. we represent
the covariance of the 2PCF in a cubic box of side 1000 Mpc/h. Dots and diamonds represent
the measured covariance of CDM (top panels) and halos (bottom), respectively, while solid
and dashed lines are the analytical equivalent under the assumption of a Gaussian density
field (see eq. 3.9). Different colors label different elements of the covariance matrix: red is
for the diagonal elements (i.e. the variance of the 2PCF), while blue, green and yellow show
respectively the 10-th, 20-th and 30-th off-diagonal elements (with an offset introduced for
sake of clarity).

up to scales of k = 0.1 h Mpc−1. To perform the fit we assumed an analytical diagonal

covariance matrix considering both cosmic variance and shot noise, even though we

checked that using the power spectrum full covariance matrix from simulations yields

identical results for b.

In Fig. 3.2 we compare the covariance (relative to a cubic box of side 1000 Mpc/h),

measured from the DEMNUni (left) and Quijote (right) simulations, and our pre-

scription as described above, eq. 3.9. We show here both the CDM (top) and halos

(bottom) measurements only for the ΛCDM case, but we find similar agreement also

for the massive neutrino case. Confirming previous results (Sánchez et al. (2008);

Smith (2009); Grieb et al. (2016); Lippich et al. (2019)), we find that the Gaussian-

density-field approximation reproduces remarkably well not only the diagonal terms,

i.e. the variances (red dots and diamonds for CDM and halos, respectively), but also

the off-diagonal ones (blue, green and yellow points) down to scales of 40 Mpc/h.
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Figure 3.3: The evolution of the dip (left), LP (center) and peak (right) positions of the
cold dark matter plus baryons 2PCF in the z −Mν plane, according to linear theory. For
each neutrino mass, the percentage difference between the quantity considered and its value
at z = 0 is plotted. Solid contour lines denote positive differences, whereas dashed lines
denote negative values. Here we keep σ8 fixed for different neutrino masses, but the result
for fixed As is almost identical.

Finally, the fitting setup employed to estimate the LP, which minimizes biases and

systematics (for both the DEMNUni and the Quijote simulations), is selected by

following the procedure developed in Anselmi et al. (2018b,a).

3.3 Results

In this Section we report and discuss in detail the main results of this work, obtained

following the procedure presented in the previous Section. We first assess the impact

of neutrino masses on the redshift-dependence position of the LP in linear theory.

Next we focus on the redshift evolution of the LP position under the effects of non-

linear gravitational evolution: we measure the LP position from simulations and also

compare it against an approximate cosmology-dependent analytic model. We then

discuss the implications of our findings when employing the LP as standard ruler for

massive neutrino cosmologies. Finally, we examine the impact of massive neutrinos

on the LP position, quantifying the shift in the LP with respect to the ΛCDM case.

We study whether that shift can potentially be used to constrain Mν . We also discuss

the scaling of the uncertainty of the LP with the survey volume and redshift, using

the set-up employed in Anselmi et al. (2018b) to estimate the LP positions and its

error.
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3.3.1 Linear perturbation theory: linear point redshift evolution

To illustrate the impact that massive neutrinos already have at linear level, in Fig.

3.3 we plot the percentage difference on the position of the dip (left panel), LP

(central panel) and peak (right panel) for CDM+b 2PCF compared to the same

quantity computed at z = 0 for different neutrino masses, assuming linear theory.

Different cosmologies have the same σ8, but an almost identical result would have

been obtained by fixing As. Solid and dashed contour lines represent positive and

negative differences, respectively. We stress that in absence of massive neutrinos, i.e.

with a scale-independent growth factor, the peak, dip and LP positions would have

been redshift-independent. A second very important thing to notice is that the LP

position is much more stable than the positions of the dip and the peak, so it is indeed

a better standard ruler. Overall, the LP shift is much smaller than the 0.5% intrinsic

uncertainty found in Anselmi et al. (2016).

3.3.2 Non-linear gravity: linear point redshift evolution

Let us start analyzing our results from Fig. 3.4. For each simulation set (DEMNUni

in the top panels; Quijote in the bottom panels) and for each model (ΛCDM in the

left panels and massive neutrinos in the central and right panels) we plot the position

of the dip on the left, the peak on the right, and the LP in the center as a function

of redshift, with their 68% relative uncertainty. In order to minimize the numerical

systematics, the LP estimation was performed on all the DEMNUni realizations and

on the first 100 Quijote ones, fitting an 8-th degree polynomial on a range of scales

spanning from 77 to 107 Mpc/h for CDM and from 75 to 115 Mpc/h for halos. Blue

crosses correspond to the measurement carried out on CDM field, while red ones refer

to halos. For the sake of clarity, we introduce a little offset with respect to the actual

redshift of the snapshot. In the Quijote set, red crosses at z = 3 are missing because

the low number density of halos (and the consequent high value of the shot noise)

prevents us from obtaining an accurate measurement of the LP and its uncertainty.

In each subplot, the vertical dotted line represents the LP position according to linear

theory. We also compare our measurements to the values predicted by a simple non-

linear model. The non-linear 2PCF can be modelled through Lagrangian PT, where

the dominant effect is given by the smoothing due to the displacements from the

initial positions. This approximation was already used in previous works (Peloso

et al. (2015); Noda et al. (2017); Vlah et al. (2015)) and shown to reproduce well the

2PCF from N -body simulations:
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ξnl
cc(r, z) =

∫ ∞

0

dk
k2 P lin

cc (k, z)

2π2
e−k

2σ2
v(z) j0(kr), (3.11)

where P lin
cc (k) is the CDM linear power spectrum and σ2

v(z) is the variance of the

displacement field or, equivalently, the one-dimensional velocity dispersion in linear

theory, given by eq. 1.47. Notice that, for our purposes, the prediction of the LP

motion for CDM and halos does not change, as the substitution P lin
cc (k)→ Phh(k) =

b2P lin
cc (k) only rescales the amplitude of the 2PCF without shifting any scale. Thus,

the solid lines in Fig. 3.4 represent the prediction of the redshift evolution of the LP

according to eq. 3.11, while the dashed lines do the same for the dip and the peak.

The gray area shows the ±0.5% LP intrinsic-bias range identified in Anselmi et al.

(2016), i.e. the maximum shift of the LP with respect to its linear-theory value, and

the motivation for the 0.5% shift in equation (3.1).

Fig. 3.4 indicates that, within 1-σ, the LP position agrees at the 0.5% level with

the linear-theory prediction. Hence, for the ΛCDM model, we confirm the findings of

Anselmi et al. (2016), which were derived with a less rigorous analysis. More impor-

tantly, for the first time, we show that the LP position remains in good agreement

with the linear prediction when neutrinos are assumed to be massive. We also no-

tice that the LP position agrees, within 1-σ, with eq. 3.11. Therefore, if needed,

Lagrangian PT could be conveniently employed to predict the LP position.

At low redshifts, the ΛCDM dip and peak non-linear shifts are different in the

DEMNUni and Quijote sets, especially for the CDM. Given that the cosmological-

parameter values are very similar for the two sets this behavior is unlikely to be

physical. A statistical fluke also seems unlikely given the agreement between the

sets at high-redshift. Therefore this difference is likely due to simulation systematics:

different mass resolution of the simulations, use of the approximated analytical co-

variance for the 2PCF (i.e. eq. 3.9) and possible numerical systematics related to the

FFT-2PCF estimator.A similar trend is present also for the νΛCDM case. Neverthe-

less, if there is a systematic difference between the DEMNUni and Quijote results, it

seems to largely cancel out for the LP.

Interestingly, we find that the uncertainty on the LP position is smaller than just

the average of the uncertainties on the peak and the dip: this reflects a significant

anti-correlation between the latter two. We notice that such anti-correlation almost

completely disappears if we use only the diagonal part of the covariance matrix.

Therefore the strong cross-correlation between different 2PCF bins is responsible for

the smaller uncertainty of the LP than of the peak and dip positions.
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Figure 3.4: We plot 68% confidence limits on the position of the dip, the peak and the LP of
the 2PCF for every snapshot of our simulation sets. The top panels refer to the DEMNUni
set, for which we have the ΛCDM model (top left) and the massive neutrino model (top
center). The bottom panels refer to the Quijote set with its three different models: ΛCDM
(bottom left), Mν = 0.1 eV (bottom center) and Mν = 0.2 eV (bottom right). For each
subpanel, dotted vertical lines represent the linear-theory prediction of the LP. The gray
area shows the ±0.5% LP intrinsic-bias range identified in Anselmi et al. (2016) (see main
text). The remaining solid and dashed lines show the evolution in redshift of the LP, the dip
and the peak, respectively, according to eq. 3.11. Blue and red bars refer to the results for
CDM and halos, respectively. Small offsets with respect to the snapshot redshifts have been
introduced for the sake of clarity. In the Quijote sector, the red bars relative to the z = 3
snapshot are missing because the high shot noise made it impossible to have a clear estimate
of the LP. It can be noticed that the LP is particularly stable and always in agreement with
the linear prediction at the 0.5% level both for ΛCDM and when massive neutrinos are
included.

Finally, we summarize in Table 3.3 the full results concerning the LP measurements

obtained for all the simulation sets we used.

3.3.3 The linear point as a standard ruler

In the previous Sections, we found that the CDM and halo LP positions are nearly

insensitive to non-linear gravitational evolution. It is crucial to also verify that RSD

do not spoil the weakness of the redshift-dependence of the LP. If that turns out to

be the case, the LP can be employed as a BAO standard ruler for cosmologies where

neutrinos are massive. In fact, as explained in Anselmi et al. (2018a), the standard-
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DEMNUni

ΛCDM
Linear prediction: 92.25 Mpc/h

redshift CDM Halos

z = 2 92.45± 0.12 92.08± 0.16

z = 1.5 92.35± 0.14 92.30± 0.18

z = 1 92.21± 0.16 92.17± 0.18

z = 0.5 91.84± 0.20 91.78± 0.23

z = 0 91.60± 0.22 91.45± 0.32

νΛCDM (Mν = 0.16 eV)
Linear prediction: 92.40 Mpc/h

redshift CDM Halos

z = 2 92.73± 0.12 92.37± 0.15

z = 1.5 92.65± 0.13 92.52± 0.17

z = 1 92.52± 0.15 92.45± 0.17

z = 0.5 92.15± 0.18 92.14± 0.21

z = 0 91.85± 0.21 91.85± 0.29

Quijote

ΛCDM
Linear prediction: 92.71 Mpc/h

redshift CDM Halos

z = 3 92.83± 0.08 7

z = 2 92.79± 0.09 92.56± 0.44

z = 1 92.59± 0.11 92.37± 0.18

z = 0.5 92.57± 0.15 92.08± 0.22

z = 0 92.39± 0.20 91.91± 0.31

νΛCDM (Mν = 0.1 eV)
Linear prediction: 92.77 Mpc/h

redshift CDM Halos

z = 3 92.96± 0.08 7

z = 2 92.93± 0.09 92.83± 0.35

z = 1 92.74± 0.11 92.38± 0.19

z = 0.5 92.73± 0.14 92.32± 0.24

z = 0 92.49± 0.20 92.05± 0.31

νΛCDM (Mν = 0.2 eV )
Linear prediction: 92.93 Mpc/h

redshift CDM Halos

z = 3 93.11± 0.08 7

z = 2 93.09± 0.09 93.00± 0.33

z = 1 92.89± 0.11 92.45± 0.18

z = 0.5 92.90± 0.14 92.34± 0.23

z = 0 92.55± 0.20 92.22± 0.32

Table 3.3: The table summarizes the results for the LP (including the 0.5% correction) for
the DEMNUni (left) and the Quijote (right) simulations. We show the LP position with
1-σ uncertainty.

ruler properties of the LP imply that it can be used to perform Purely-Geometric-BAO

(PG-BAO) distance measurements.

BAO measurements are one of the main motivations for cosmologists to perform

galaxy surveys. As detailed in Anselmi et al. (2018a), the PG-BAO approach allows

one to estimate cosmic distances without assuming neither spatial flatness nor a spe-
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cific model for the late-time acceleration of the Universe. Furthermore the estimated

distances are independent of the primordial-fluctuation parameters.

One of the consequences of our findings is that the set of cosmological models for which

a PG-BAO approach has been demonstrated now includes massive neutrinos. Note

that, while this holds true for the LP, it has not yet been proven for the correlation-

function model-fitting approach to PG-BAO, as defined in Anselmi et al. (2018a).

Finally, since in this work we have demonstrated the nearly redshift-independence of

the LP, the next natural step will be to investigate its neutrino mass dependence. This

will inform us of its power to constrain the neutrino mass. Hence the investigation

presented in O’Dwyer et al. (2020) should be extended to the massive neutrino case.

3.3.4 Detecting the neutrino mass with the linear point

In the real Universe, we do not know the true value of the cosmological parameters

and neutrino masses. It is, however, interesting to ask whether, assuming the ΛCDM

model, the LP could be used to detect the non-zero neutrino mass, if we know per-

fectly all the remaining cosmological parameters. One way to answer this question is

to estimate the LP position from both real observed galaxy data and from the “equiv-

alent” mock galaxy distribution where neutrinos are massless3. We then ask if the

two LP detections are different enough to provide a neutrino-mass detection. In the

following, we mimic this procedure using our N -body simulations. We highlight that

we do not aim at a very accurate answer, for which we should investigate the RSD

effects, carefully analyze how to fix all the cosmological parameters, populate our

simulations with galaxies, dealing with the cross-correlation between different simu-

lations and matching the number densities and volume of the selected galaxy surveys.

Since in this context we are not after a very accurate investigation, for simplicity in

this part we choose to perform the analysis using a single setup which minimizes the

biases for all the configurations (volumes, tracers and redshifts) we consider, always

following the prescription by Anselmi et al. (2018c). It turns out that a 5-th order

polynomial fit between 75 and 115 Mpc/h is enough for our purposes. Notice finally

that this exercise does not require the LP to be a BAO standard ruler. Nevertheless

it has convenient properties to this end: it is weakly sensitive to non-linearities, it

can be estimated in a model-independent way, it has a small uncertainty and it is

independent of the fixed value of the scalar amplitude and index.

3From observed galaxy data we measure the LP in fiducial comoving coordinate (Anselmi et al.
(2018c,a)). Therefore, before using the LP to detect the neutrino mass, it is required to use a fiducial
cosmology close enough to the true cosmology.
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Figure 3.5: Signal-to-noise ratio, computed with eq. 3.12, for a possible neutrino mass
detection using the LP shift with respect to the ΛCDM case. The S/N caused by a neutrino
mass of 0.1 (0.2) eV is displayed on the left (right) panels. Top panels show the results for
CDM only, while the bottom ones show the same for halos. The left columns of the bottom
panels are missing because we do not perform the analysis for halos at z = 3.

Our neutrino mass detector is defined by a signal-to-noise ratio (SNR) for every

redshift and survey volume as the ratio between the difference of the LP position, in

massive neutrino cosmologies and the massless case, and the sum in quadrature of

the uncertainties in the two models. Mathematically:

S

N

∣∣∣∣
z,V

=
rLP(Mν)− rLP(0)

[σ2
LP(Mν) + σ2

LP(0)]
1/2

(3.12)

For both the ΛCDM and the νΛCDM cases, we use the LP position and error mea-

sured from N -body simulations.

The colormaps in Fig. 3.5 show the SNR computed with eq. 3.12 for the different

models and survey volumes. The various columns label different neutrino masses (0.1

eV on the left, 0.2 eV on the right); different rows – and different colors – label the

two different tracers, CDM and halos, respectively. Once again, we notice for CDM

a clear trend, with the SNR increasing for increasing neutrino mass, volume and

redshift, for the following reasons. First, since in the simulations Ωm is kept fixed, a

72



larger neutrino mass means a smaller Ωc. This affects the shape of the CDM power

spectrum, and in turn of the 2PCF in a significant way at the linear level, in particular

shifting the peak, the dip and the LP towards larger scales (see Fig. 3.1. Second,

increasing the survey volume shrinks the uncertainty on the LP but does not affect

its mean value: we therefore expect the denominator of eq. 3.12 to decrease for large

volumes and consequently the SNR to rise. Third, also related to the previous point,

a boost of the SNR for increasing redshift is also expected. While the LP remains

stable, late-time non-linearities smear out the BAO feature; we therefore expect the

uncertainty in the zero-crossings of the first derivative of the 2PCF, and thus the

uncertainty in the LP, to be larger at low redshift. All in all, for Mν = 0.1 eV we find

the SNR to be larger than 1 when V > 30 Gpc/h and z > 1; for Mν = 0.2 eV the

SNR is larger than 1 for most of the volumes and redshifts considered in Fig. 3.5.

For halos the situation is different: the absence of a clear trend suggests that our SNR

is dominated by the statistical error on the LP. Quantitatively, for 0.1 eV neutrino

mass the SNR is never greater than 1, while we only find a few cases for which this

is true for Mν = 0.2 eV. On the other hand, the additivity of eq. 3.12 ensures that

having more redshift bins can help in increasing the SNR. For instance, from the

bottom-right panel of Fig. 3.5, we can see that four bins at z = 2, 1, 0.5, 0, each of 75

(Gpc/h)3 would be sufficient to detect the LP shift due to a neutrino mass of 0.2 eV

with SNR = 2.6.

An important point to stress is the following. In Section 3.3.2 we pointed out how

the uncertainty on the LP is smaller than the average of the uncertainties of the peak

and the dip. This translates to the fact that, if we reproduced Fig. 3.5 using the peak

as our observable to detect the neutrino mass (instead of the LP), we would obtain a

lower SNR because the numerical value of the denominator in eq. 3.12 will be larger

than the LP case. As a consequence using the LP position to detect the neutrino

mass works better than using the peak: the LP position is found to be extremely well

measured due to the high degree of anti-correlation of the peak and the dip positions.

We wish now to compare the SNR for the two simulations sets. In Fig. 3.6 we

show the SNR as a function of redshift. The light-blue and pink squares are relative

to the SNR as measured from the 50 DEMNUni realizations, for CDM and halos,

respectively. For the Quijote we also plot the SNR relative to 50 realizations. As in

previous plots, CDM is depicted in blue, whereas halos are in red. Different models

are represented with different line styles: dotted for Mν = 0.1 eV, solid for Mν = 0.2

eV.
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Figure 3.6: The figure shows the signal-to-noise ratio for a possible neutrino-mass detection
using the LP shift with respect to the ΛCDM case. Here we compare the signal-to-noise
for the 50 realizations of the DEMNUni set with the 50 of the Quijote (i.e. our reference
volume). Squares represent the ratio for the DEMNUni set, light-blue and pink for CDM
and halos respectively. Circles refer to the Quijote set, where we distinguish the model
with Mν = 0.1 eV (dashed line) and the one with Mν = 0.2 eV (dotted line). Like in the
previous figures, CDM is represented in blue, whereas halos are in red. Finally, the dotted
black horizontal line symbolizes a S/N ratio equal to 1.

Let us focus on CDM first. Before comparing the two sets, it must be stressed that

alhough they share the same volume, there are two fundamental differences. First,

in the DEMNUni simulations neutrinos have a total mass of 0.16 eV, while in the

Quijote Mν is either 0.1 or 0.2 eV. Second, as already mentioned, the amplitude of

fluctuations in the two sets is regulated by two different parameters: while in the

DEMNUni the amplitude of the primordial scalar perturbations, As, is constant and

σ8 decreases for increasing neutrino mass, in the Quijote σ8 is kept fixed. Therefore,

for fixed Mν , in the latter set we expect a higher damping of the BAO feature due

to non-linearities (see Fig. 3.1 and, consequently, a higher uncertainty in the LP and

a smaller SNR. This explains why the SNR in the Quijote is much smaller than the

DEMNUni for Mν = 0.1 eV but comparable with it for Mν = 0.2 eV, i.e. for a larger

neutrino mass.

We turn now our attention to halos, again underlining that there are relevant differ-

ences between the halo populations. The different mass resolutions of the two sets

imply a different minimum halo mass (see Table 3.1. Table 3.2 shows how halos in the
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DEMNUni outnumber the ones in the Quijote by a factor that ranges from ∼ 4 − 5

at z = 0 to ∼ 12 − 14 at z = 2. From Fig. 3.6, it is evident how in the DEMNUni,

despite a lower neutrino mass, the SNR for a detection is substantially larger than

in the Quijote, even for Mν = 0.2 eV. This suggests that shot noise plays a crucial

role in reducing the SNR, more than neutrino mass itself. To further support this

conclusion, we notice how the evolution of the SNR in the Quijote is almost identical

for different neutrino masses. In fact, if we crudely estimate the standard deviation

of the error on LP by assuming that the LP position is normally distributed (Kenney

& Keeping (1951)):

σσLP
= σLP

Γ[(Nreal − 1)/2]

Γ[Nreal/2]

√
Nreal − 1

2
−
(

Γ[Nreal/2]

Γ[(Nreal − 1)/2]

)2

, (3.13)

where Nreal is the number of realizations considered, we see that the spike at z = 0.5

for the 0.2 eV case is just a 2-σ statistical fluctuation. We also point out that shot

noise and the bias of the tracer are tightly related to one another – imposing a fixed-

mass cut in simulations corresponds to selecting fewer halos at high redshifts, with

the latter being the most massive and the most biased.

In conclusion, two different things are needed in future surveys in order to be able to

detect neutrino mass using the LP: a large volume and a densely populated galaxy

sample to pull down cosmic variance and shot noise. To quote some numbers reflecting

the current status, we can forecast the SNR in past and upcoming surveys. One

promising avenue to use the LP as a neutrino mass probe would be to rely on intensity

mapping surveys: in this case very large volumes can be covered and the shot-noise

contribution to the overall signal is expected to be small (Villaescusa-Navarro et al.

(2017, 2018b)).

In order to forecast the capability of galaxy surveys to detect the neutrino mass with

the LP, we need to investigate its uncertainty and how it scales with redshift, volume

and number density. In Fig. 3.7 we plot the 68% error on the LP position as a function

of redshift and volume in the Quijote simulations. The three different columns refer

to the three different neutrino masses we consider (0 eV, 0.1 eV, and 0.2 eV in the left,

center and right panels, respectively). The blue surfaces show the uncertainty in the

LP as measured from the 2PCF of the CDM, whereas the red ones represent the same

for halos. As expected, we find a decreasing uncertainty for increasing volume, scaling

as V −1/2. However, concerning the evolution in redshift, we notice different trends for

the two tracers. On the one hand, σLP for CDM monotonically increases with time

due to the larger BAO smoothing caused by late-time non-linearities. On the other
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Figure 3.7: LP position uncertainty as a function of redshift and volume (i.e. number of
realizations) in the Quijote set. We show the case for the ΛCDM (left) and the two massive
neutrino models (center and right). The blue surfaces show the 68% uncertainty on the LP
in the 2PCF of the CDM, while the red ones are the equivalent for halos.

hand, while we find an analogous trend also for halos at late times, this tendency

abruptly reverses at around z ≈ 1. The reason is the decreasing number density of

halos at early times and the consequent rise of shot noise, whose contribution becomes

more and more important in the covariance matrix, eq. 3.9.

By fitting to our simulations, we obtained an empirical formula that can be used to

predict the uncertainty on the LP for the tracer X:

σLP,X(z, V ) ≈
[

2 (Gpc/h)3

V

]1/2 [
(1 + αX) b1/2D2

1(z) + (1 + βX)
n̄c

n̄X(z)

]
Mpc/h .

(3.14)

Here we have normalized the shot-noise term with respect to the (constant) average

CDM number density n̄c; b is the bias factor; D1(z) is the scale-independent linear

growth factor; and αX and βX are two free parameters that represent respectively

deviations from the standard growth, and the shot noise 1/n̄X(z). The values of the

parameters we obtain are quite independent of the neutrino mass, but do depend on

the tracer: in particular, we find αh ≈ 0.7, (1 + βh) ∼ 10−4 for halos, and αc ≈ 0,

(1 + βc) ≈ 0.52 for CDM. To find the numerical value of αh and βh we use the

approximation introduced in eq. 3.13 to estimate the uncertainty on the uncertainty

on the LP. Notice that to forecast the galaxy-survey SNR we will use eq. 3.14 in

parameter regions where it has not been validated. We are aware of the potential

systematic error introduced by this extrapolation. However, this is adequate for our

purposes here of conducting a preliminary investigation of the utility of the LP for

neutrino mass detection. For the same reason, to compute the numerator of eq. 3.12
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we always use the value of the LP estimated from 50 simulation boxes. In fact we

found that, as expected, the LP best fit is weakly sensitive to the simulation volume

considered.

Using the first and third bins of the BOSS DR-12 data (Alam et al. (2017)) we obtain

a SNR of 0.8 for Mν = 0.1 eV and of 1.9 for Mν = 0.2 eV. Concerning future surveys,

by assuming the 4 redshift bins, number densities, volumes and biases reported in

Euclid Collaboration et al. (2019a), and using the fitted values for αh and βh, we

forecast an overall SNR ≈ 3.9 for Mν = 0.1 eV, and SNR ≈ 5.2 for Mν = 0.2 eV. We

should finally remark that comparing the outcomes of eq. 3.14 to the accurate LP

error estimates found for BOSS (Anselmi et al. (2018b)) and Euclid (Anselmi et al.

(2018a)) we notice that eq. 3.14 consistently underestimates the LP uncertainties.

We warn the reader that the SNR we found for BOSS and Euclid is probably an

upper limit on the results of a dedicated analysis.

As a final remark, we would like to stress that these results were obtained by as-

suming perfect knowledge of the underlying cosmology. When allowing cosmological

parameters to vary, the SNR analysis just exposed may drastically change due to the

possible degeneracies among parameters that would come into play. Further work

is the needed to provide more accurate results, also including the effect of RSD and

using galaxies instead of halos.
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This Chapter is based on
G. Parimbelli, M. Viel, E. Sefusatti,
On the degeneracy between baryon feedback and massive neutrinos as probed by matter clustering
and weak lensing
JCAP01(2019)010, arXiv:1809.06634

4
Degeneracies between massive neutrinos

and nuisances in matter clustering and
weak lensing

4.1 Motivation

Upcoming galaxy surveys like Euclid1, the Large Synoptic Survey Telescope (LSST)2,

the Dark Energy Spectroscopic Instrument (DESI)3 and the Square Kilometer Array

(SKA)4 will become operative in the next few years. Other ambitious projects like

DES5 are indeed already happening (Abbott et al. (2018, 2019)). These probes will

allows us to study the evolution of the Universe through cosmic ages with unprece-

dented accuracy, using as observables galaxy clustering (baryon acoustic oscillations,

BAO, and redshift-space distortions, RSD) and weak lensing. With these improve-

ments we will be able to put tighter constraints on the cosmological parameters and

assess possible deviations from the standard flat ΛCDM paradigm. As mentioned in

previous Chapters, these new experiments will almost certainly be able to measure

1https://www.euclid-ec.org/
2https://www.lsst.org/
3http://desi.lbl.gov/
4https://www.skatelescope.org/
5https://www.darkenergysurvey.org/

78

https://www.euclid-ec.org/
https://www.lsst.org/
http://desi.lbl.gov/
https://www.skatelescope.org/
https://www.darkenergysurvey.org/


for the first time the total neutrino mass Mν (Audren et al. (2013); Sprenger et al.

(2019); Euclid Collaboration et al. (2019a)).

Particle physics experiments on neutrino oscillations have put a lower bound to Mν ≈
0.06 eV (see e.g. Lesgourgues & Pastor (2006)). On the other hand, cosmology has

been able to place either upper limits (Giusarma et al. (2016)) or marginal preference

(Beutler et al. (2014); Battye & Moss (2014); Di Valentino et al. (2017)) for a non-zero

total neutrino mass. The current tightest constraints come from combining Planck

(Planck Collaboration et al. (2016)) with BOSS Lyman-α forest data, providing Mν <

0.12 eV at 95% confidence level (Palanque-Delabrouille et al. (2015a)).

To reach percent accuracy in the constraints of cosmological parameters, a huge effort

must be carried out in the theoretical modelling of the observables and of the sys-

tematic errors that may affect our predictions for RSD and galaxy bias in clustering

observations and shape-noise in shear surveys. One of the most important aspects

when including massive neutrinos in the cosmological model is the fact that their

effect on the matter power spectrum may mimic what goes under the name of baryon

feedback. Baryon feedback can be defined as a set of astrophysical processes capable

of modifying the matter distribution on the scales comparable to the halo sizes. Such

processes include Active Galactic Nuclei (AGN) feedback, galactic winds and hot X-

ray emitting gas physics. Usually their description relies on hydrodynamical N -body

simulations (Schaye et al. (2010); van Daalen et al. (2011); Semboloni et al. (2011);

Mummery et al. (2017)), since the observational constraints are still poor. How-

ever, it is well known that baryon effects are underestimated in simulations: while

observations have shown that even massive halos are missing significant amounts of

gas (Sun et al. (2009); Lovisari et al. (2015); Eckert et al. (2016)), simulations tend

to overpredict the baryon fraction in clusters. BAHAMAS and FABLE simulations

make the only exceptions, as they are calibrated to reproduce the observed baryon

fractions (McCarthy et al. (2017); Henden et al. (2018)). Interestingly, despite these

mechanisms are different in nature, their net effect on the matter power spectrum is

similar: a suppression starting from k ∼ 0.5 h/Mpc is expected, reaching 10-25 %

around k ∼ 2 h/Mpc (Schneider & Teyssier (2015)). In recent years, several analyt-

ical approaches have been proposed to model this effect: some approaches propose

fitting functions with parameters depending on the feedback model implemented in

the simulation (Harnois-Déraps et al. (2015); Chisari et al. (2018)), others treat feed-

back as the consequence of a modification of the universal density profile ofn dark

matter halos (Mead et al. (2015); Schneider & Teyssier (2015)).
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Previous and current works have always treated baryon feedback as a nuisance to the

cosmological signal (Abbott et al. (2018); Köhlinger et al. (2017)), without quantifying

a possible bias on the estimate of Mν . In this paper we show that the degeneracy

between baryon feedback and massive neutrinos is not significant and the two effects

can be disentangled. The main reason why this can be done is that, besides involving

different ranges of scales, the redshift evolution of the two phenomena are rather

different from each other: thus, performing a tomographic analysis is expected to be

the best way to achieve our goal.

Our work is based on the formalism developed in Audren et al. (2013), where a

Markov Chain Monte Carlo (MCMC) method to forecast errors on cosmological

parameters for a Euclid-like survey combined with Planck is used. More recently,

(Sprenger et al. (2019)) have carried out the same analysis including also 21cm galaxy

clustering and intensity mapping as will be probed by SKA. The reason why we chose

to perform MCMC instead of simple Fisher matrix analysis is that the former has

been shown to return more realistic results than the latter, which has well-known lim-

its when exploring the cosmological parameters full likelihood function. An official

Fisher matrix forecast for Euclid has been anyway performed (Euclid Collaboration

et al. (2019a)) one year after the publication of Parimbelli et al. (2019) and Sprenger

et al. (2019).

In this Chapter we consider as our “observables” the 3-D, cold dark matter-plus-

baryons (CDM+b) power spectrum and the cosmic shear power spectrum. Clearly

the former is not a real observable and, in fact, in this paper we limit ourselves to a

study of the degeneracy between neutrino mass and baryon feedback at the level of the

matter distribution, leaving any complication due to galaxy bias (and redshift-space

distortions) for a future work. Furthermore, for clustering we apply the so-called cold

dark matter prescription (Ichiki & Takada (2012); Villaescusa-Navarro et al. (2014);

Castorina et al. (2014); Costanzi et al. (2013)): in massive neutrino cosmologies, the

relevant field for the description of galaxy clustering is the CDM+b one rather than

the total matter, since we can recover the expected constant linear bias at large scales

only with respect to the former (see Section 2.4.1 for a more detailed discussion).

Weak lensing is surely one of the most promising cosmological tools for the next

decade, as it probes the deep non-linear regime: in fact, while non-linearities already

arise at relatively small multipoles (` ∼ 100, see e.g. Takada & Jain (2004)), future

surveys are expected to reach much smaller angular scales (`max ∼ 2000 − 5000).

Despite it results from an integration along the line-of-sight, 3-dimensionality can be
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restored by performing a tomographic analysis, i.e. dividing galaxies in redshift bins

and for each pair measure the shear power spectrum.

Latest results from the KiDS survey (Köhlinger et al. (2017)) and DES (Abbott et al.

(2018, 2019)) highlight some tensions between each other. In addition, KiDS data

seem to underpredict the overall amplitude of primordial fluctuations with respect to

Planck (Leauthaud et al. (2017); Efstathiou & Lemos (2018)), while McCarthy et al.

(2018) has demonstrated that baryon feedback alone is not enough to reconcile the

tension in the Ωm−σ8 plane and a non-minimal neutrino mass can resolve it. Therefore

a detailed study of the possible degeneracies between the two effects becomes of

primary importance.

For both clustering and shear we incorporate non-linearities using the HALOFIT

version by (Mead et al. (2015)). These fitting formulae can reproduce the cold matter

power spectrum with an accuracy better than ∼ 5% even in the deeply non-linear

regime (k . 10 h/Mpc). With this approach we essentially assume that any prediction

adopted in the analysis of future data set is the direct results of investigations based

on N -body simulations and we therefore include as theoretical uncertainties those

affecting numerical methods. How this and other error sources are computed can be

found explicitly in Section 4.3.

This Chapter is organized as follows: in Section 4.2 we briefly introduce the observ-

ables we employ as well as the impact that the phenomena we are after have on the

latter; in Section 4.3 we describe in detail the procedure we follow; in Section 4.4 we

present our main results; in Section 4.5 we report our conclusions; finally in Section

4.6 we discuss some possible interesting follow-up work.

Throughout this work we assume a flat ΛCDM model with one single massive neutrino

species with parameters Ωb = 0.0486, Ωm = Ωc + Ων + Ωb = 0.3089, h = 0.6774,

As = 2.14× 10−9, ns = 0.9667, i.e. the best-fit values found by Planck Collaboration

et al. (2016).

4.2 Theoretical framework

This Section summarizes the observables we are going to use in our analysis, namely

the CDM+b power spectrum and the cosmic shear spectrum. We will report some of

the equations already derived in Chapters 1 and 2. In the second part of this Section

we will also discuss in detail the phenomenon of baryon feedback and its impact on

the aforementioned observables. In particular, we will focus on the baryon feedback

model of Schneider & Teyssier (2015).
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4.2.1 Observables: CDM+b power spectrum and cosmic shear

The large-scale structure of the Universe is the result of the growth of small density

perturbations that evolved through cosmic ages. In massive neutrino cosmologies,

at the redshifts relevant for large-scale structure observations, we can identify two

contributions to the total matter density ρm given by the cold matter (including

baryons), ρc, and neutrinos, ρν . Total matter perturbations can then be written as

(see also eq. 2.29):

δm = (1− fν) δc + fν δν , (4.1)

where fν ≡ Ων/Ωm is the fraction of the neutrino contribution to the total mat-

ter density. From here on, the subscript ‘c’ will label the CDM+b fluid, while ‘m’

will denote total matter quantities. Numerical investigations (Villaescusa-Navarro

et al. (2014); Castorina et al. (2014); Costanzi et al. (2013); Castorina et al. (2015);

Villaescusa-Navarro et al. (2018a); Ruggeri et al. (2018)), along with earlier theo-

retical descriptions of spherical collapse in the massive neutrino scenario (Ichiki &

Takada (2012)), have shown that halo formation is driven by the CDM+b component

alone. This assumption allows to recover universality for the halo mass function and

halo bias, otherwise apparently lost in a description based on total matter pertur-

bations. The quantity of interest for halo (and galaxy) clustering is therefore the

CDM+b power spectrum, Pcc(k). We will focus on this quantity leaving aside the

actual observable, i.e. the galaxy power spectrum In fact, the aim of this work is

just to quantitatively address the putative degeneracies between the suppressions of

power induced by feedback effects and neutrinos at the level of matter perturbations

alone, without focusing on the most realistic errors on Mν .

Our second quantity of interest is the shear power spectrum from gravitational lensing

(Bartelmann & Schneider (2001); Hoekstra & Jain (2008)). We will work in the

weak regime, where distortions of the shapes of galaxies are much smaller that their

intrinsic ellipticity and the power spectra of convergence and shear are statistically

equivalent. The lensing effect depends on the gravitational potential along the line-

of-sight, directly related through Poisson equation, to the total matter perturbations.

Our predictions for this observable will then be derived in terms of the total matter

power spectrum Pmm(k).

Dividing source galaxies into N redshift bins, i.e. performing a tomographic analysis,

allows to improve the constraints on cosmological parameters (Takada & Jain (2004)),

as this will result in N(N + 1)/2 nearly independent observables. We assume the

flat-sky Limber’s approximation, which is valid for small angles or, equivalently, for
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high ` values (` & 10 − 20) (see Kilbinger et al. (2017) for a derivation of the shear

and convergence spectra without these approximations). We report here the formula

already exposed in Chapter 1:

C(ij)(`) =

∫ ∞

0

dz
c

H(z)

W (i)(z) W (j)(z)

χ2(z)
Pmm

(
k =

`

χ(z)
, z

)
, (4.2)

where Pmm(k, z) is the non-linear total matter power spectrum and χ(z) is the co-

moving distance to redshift z (eq. 1.11). W (i) is the window function describing the

(normalised) distribution of sources P(z) in the redshift bin [zi, zi+1], given by eq.

1.61 and is a measurement of the lensing efficiency in the i-th tomographic bin.

4.2.2 Impact of massive neutrinos

We saw in Chapter 2 that massive neutrinos affect the cold and total matter power

spectra (and in turn the cosmic shear one) both in the linear and non-linear regimes.

The large thermal velocities that neutrinos possess at their decoupling prevent them

from clustering, at linear order, in regions smaller than the free-streaming scale (e.g.

Lesgourgues & Pastor (2006)):

kfs = 0.82
E(z)

(1 + z)2

Mν

1 eV
h/Mpc. (4.3)

This results in a suppression in the linear CDM+b power spectrum Pcc(k) and total

matter power spectrum Pmm(k) at scales smaller than kfs of −6fν −8fν (Lesgourgues

& Pastor (2006); Castorina et al. (2015), Eqs. 2.32 and 2.31, respectively) as long as

fν . 0.07. Clearly we expect a larger suppression in the total matter power spectrum

since this is given by the combination:

Pmm(k) = (1− fν)2 Pcc(k) + 2 fν (1− fν)Pcν(k) + f 2
ν Pνν(k) , (4.4)

and the cross cold matter-neutrinos power spectrum Pcν(k) and neutrinos power spec-

trum Pνν(k) rapidly decay for k > kfs.

At lower redshift, neutrinos become non-relativistic and eventually fall into dark mat-

ter potential wells. This “neutrino drag” relieves the small-scale suppression, so that

plotting the ratio between the power spectra in a massive neutrino cosmology with

respect to the ΛCDM one with the same amplitude in the large-scale perturbations

gives rise to the well-known spoon-shape curve around k ∼ 1 h/Mpc (see the continu-

ous lines in the top left panel of fig. 4.1). Quantitatively, in the non-linear regime, the

suppression becomes of order ∆Pmm/Pmm ≈ −10 fν with a stronger scale-dependence

(Brandbyge & Hannestad (2009); Viel et al. (2010); Hannestad et al. (2020)).
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Figure 4.1: The four panels show the effect of the neutrino mass and of the three different
feedback parameters of the BCM on the matter power spectrum at z = 1 (approximately
the median redshift of future surveys). All the ratios are taken with respect to a CDM+b
power spectrum model (linear with respect to the linear, non-linear w.r.t. the non-linear) in
a cosmology with minimum-allowed neutrino mass Mν = 0.056 eV and no baryon feedback.
In the top left panel the neutrino mass is varied while the ratio in both linear and non-
linear regime are shown. The top right panel shows the effect of increasing logMc, in the
bottom left panel we change the parameter ηb, while in the bottom right we display how the
redshift parameter affects the feedback fitting function. The gold shaded areas represent
cosmic variance for a survey like in Audren et al. (2013) in a redshift bin of ∆z = 0.1
centered at z = 1. The grey shaded areas represent the theoretical uncertainty on the
matter power spectrum due to the HALOFIT fitting formulae, 4.14. In all the panels a
vertical line at k = 0.5 h/Mpc is drawn, to mark the maximum k at which our analysis is
extended.

On the other hand, because of the line-of-sight integration of eq. 4.2, the suppression

of the matter power spectrum translates into a suppression in the shear power spec-

trum that affects almost all multipoles, with a milder dependence on scale (see fig.

2.6 and top-right panel of fig. 4.2).

4.2.3 Impact of baryon feedback

In addition to massive neutrinos, baryonic feedback processes, comprising violent

events such as supernova explosions and the accretion onto the central black hole in

AGNs, are also responsible for a small-scale drop in power. The theoretical modelling

of these effects is affected by large systematic uncertainties because of the difficulty

in properly capture baryonic physics in simulations and because of the looseness of
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Figure 4.2: This picture is the same of fig. 4.1 but here the cosmic shear power spectrum is
shown, with a source distribution like in Audren et al. (2013), a sky coverage of fsky = 0.375
and with all galaxies in a single bin, i.e. no tomography has been performed.

the constraints offered by observations. In general, baryon feedback is expected to

cause a suppression to the matter power spectrum of ∼ 25% at scales of k ∼ 2 h/Mpc

(Schneider & Teyssier (2015)), but the uncertainty on different AGN feedback models

could reach 50% for scales k . 1 h/Mpc (Harnois-Déraps et al. (2015)).

Nevertheless, in the last few years several analytical descriptions, relying on fits to

numerical simulations, have been proposed. We will make use here of the baryon cor-

rection model (BCM) by Schneider & Teyssier (2015). As opposed to other similar

proposals (see for instance Harnois-Déraps et al. (2015); Chisari et al. (2018)) this

model has the advantage of employing parameters with a well-established physical

meaning. The BCM assumes that X-ray emitting gas, AGN activity and more in

general the complex intracluster physics smoothly modify the profile of the dark mat-

ter halo, assumed to be NFW. It must be stressed however, that this model is obtained

from a set of hydrodynamical simulations that do not incorporate other mechanisms

such as galactic winds, which could produce different scale and redshift dependencies

for the suppression. Although the suppression of power depends on different sets of

parameters, the shape of the predicted damping, as obtained from simulations, is

similar for most of the feedback mechanisms. This is the main motivation to relax

the priors on the BCM feedback parameters even outside their physical range in order

to be conservative and probe a wider range of feedback-induced suppressions.
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The BCM assumes that a halo is composed by a relaxed DM profile plus a number

of baryonic components: a fraction of gas which is bound to the halo, a fraction

of gas that is ejected and a stellar component which enhances the density at the

very center of the halo. Each of these components has its own density profile (the

model also includes a back-reaction of baryons on the NFW profile), regulated by

some free parameters. The latter are used to actually kick the particles in CDM-only

simulations to mimic the effect of the baryons. Depending on the strength of these

parameters the halo profile is modified more or less, affecting the matter distribution

in the Universe on scales comparable to halo sizes. These modifications are reflected

on the matter power spectrum in a way that can be described by a fitting function: it

can be shown that out of the dozen free parameters used to modify halo profiles, only

three of them are sufficient to grasp the relevant modification to the power spectrum.

Said function describes the ratio between the total matter power spectrum accounting

for baryon feedback to the power spectrum of the dark-matter-only (dmo) scenario

and reads:

Ffeed(k, z|Mc, ηb, zc) ≡
Pfeed(k)

Pdmo(k)
=

{
B(z)

1 + (k/kg)3
+ [1−B(z)]

}
S(k), (4.5)

where

B(z) =
0.105 log

(
Mc

M�/h

)
− 1.27

1 + (z/zc)2.5
(4.6)

for Mc ≥ 1012 M�/h and zero otherwise,

kg(z) = 0.7 [1−B(z)]4 η−1.6
b h/Mpc , (4.7)

while the term outside the bracket is the stellar component of the central galaxy,

S(k) = 1 +

(
k

55 h/Mpc

)2

. (4.8)

As already said, the expressions above depend on three parameters: Mc, ηb and zc.

The critical mass Mc is related to the bound gas fraction in a halo. Hydrodynamical

simulations show that part of this gas is ejected and such ejection is stronger in

low mass halos. So we expect low mass halos to have their gas almost completely

stripped. In this picture, Mc represents the typical halo mass scale below which most

of the gas is ejected. This parameter regulates the prominence of the suppression:

the higher Mc, the smaller Pfeed(k) will be. The parameter ηb controls the scale at

which the suppression becomes relevant. Such parameter is related to the ejected gas

fraction: it may be viewed as the ratio between the thermal velocity of the gas in the
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intracluster medium and the halo escape velocity. As such, the higher ηb, the more

the suppression occurs at larger scales. Finally, the last parameter zc accounts for

the time dependence of the suppression, which is growing with decreasing redshift as

the signal is dominated by larger and larger halos.

To prove the goodness of their formula, Schneider & Teyssier (2015) tested the BCM

on the hydrodynamical simulations by Jing et al. (2006) which include radiative

cooling and star formation but no AGN feedback. They obtained a best fit of ηb ∼ 1.0

and Mc ∼ 2 × 1012 M�/h: such a low value for the latter parameter is in very

good agreement with the lack of AGN feedback set in the simulations. BCM was

also applied to the OWLs simulations (van Daalen et al. (2011)) obtaining values of

Mc ∼ 5 × 1014 M�/h and ηb ∼ 0.4, indicating a high AGN activity. The systematic

error affecting 4.5 is of order 2−3% at all scales up to k . 10 h/Mpc. This uncertainty

will be included in the error on the HALOFIT formulae that we will introduce in the

next Section.

A follow-up work of the BCM model (Schneider et al. (2019)) was published few

years later of the analysis presented in this Chapter. With respect to the former,

the new proposed suppression is shallower with a milder scale-dependence. However,

this latest work does not provide a fitting formula for the suppression of the power

spectrum, but only evaluates it by displacing the CDM particles in the simulation

according to the various baryonic components inside halos.

Figs. 4.1 and 4.2 show separately the effects of massive neutrinos and the original

BCM, respectively on the matter power spectrum and the shear power spectrum.

The top left panel of fig. 4.1 shows how increasing the neutrino mass suppresses more

and more the matter power spectrum (both in the linear and non-linear regimes). A

crucial point to stress is that the scale at which neutrino suppression starts is almost

constant (i.e. knr is only weakly-sensitive to Mν) and much larger than the scales

involved by baryon feedback (see the other three panels).

Fig. 4.2 shows the same effect but on cosmic shear. Here feedback only affects high

multipoles (` & 80), while massive neutrinos damp the shear spectrum even at low

ones. For neutrino masses greater than 0.3 eV, the suppression is so high that, in

order for baryon feedback to mimic it, all halos with mass smaller than ∼ 1014 M�/h

should expel their gas, implying an extraordinarily strong AGN activity.
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4.3 Method

The goal of this Chapter is to investigate potential degeneracies between the effects

of massive neutrinos and baryon feedback on CDM+b and shear power spectra. To

do so, we follow a procedure similar to Audren et al. (2013). In that work, a forecast

of the errors on cosmological parameters was presented, as expected from a Euclid-

like galaxy clustering and weak lensing survey. They performed a MCMC likelihood

analysis assuming as fiducial, “mock” data the theoretical prediction (i.e. without

statistical scatter). This had been shown to lead to the same forecast errors as em-

ploying more realistic measurements from N -body simulations (Perotto et al. (2006)).

In particular, they used the prescription by Bird et al. (2012), available at that time,

to account for non-linearities both in the galaxy and shear spectra. The systematic

uncertainty affecting the HALOFIT prescription was also accounted for in the error

budget.

In the following subsections we describe in detail the similar analysis we perform for

the clustering and shear survey along with the specific characteristics assumed for the

surveys, borrowed as well from Audren et al. (2013).

4.3.1 Clustering survey

As already mentioned, we are limiting the scope of our analysis to exploring degen-

eracies at the level of the matter density field. For our CDM+b clustering survey we

consider the volume probed by a spectroscopic redshift survey covering a sky fraction

of fsky = 0.375, spanning a redshift range from z = 0.5 to z = 2.0 subdivided in 16

redshift bins. The volume of each shell is given by:

Vs(z) = 4π fsky χ
2(z)

∆z

(1 + z)3

dχ

dz
, (4.9)

where ∆z = 0.1 is the bin width in redshift. Since our “observable” is the 3-D CDM+b

power spectrum, additional, relevant survey characteristic such as the expected galaxy

number density will not play a role in our analysis.

We assume a Gaussian likelihood function for cold matter power spectrum Pcc given

by:

lnLC ∝ −
1

2

∑

z bins

∑

i,j

[
P th

cc (ki, z)− P obs
cc (ki, z)

] [
Cov(z)−1

]
ij

[
P th

cc (kj, z)− P obs
cc (kj, z)

]
,

(4.10)

where P th
cc (k, z) and P obs

cc (k, z) are respectively the theoretical and “observed” cold

matter power spectra while Covij is the covariance matrix. All power spectra are
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evaluated in wavenumber bins of size ∆k = 0.0163 h/Mpc from a minimal value of

kmin = 0.01 h/Mpc to a maximum of kmax = 0.5 h/Mpc. The chosen value of ∆k

is always larger than the effective fundamental frequency keff
f (z) ≡ 2π/[Vs(z)]1/3 of

each subvolume Vs(z) defined by the binning in redshift. The value for kmax is a

rather optimistic estimate for the maximum scale that future surveys will reach. In

fact, most spectroscopic surveys targeting baryonic oscillations as one of the main

cosmological probes are, by design, limited by shot-noise to kmax = 0.3− 0.4 h/Mpc.

All power spectra are generated using CAMB (Lewis et al. (2000)). Non-linearities

are modelled through the version of the HALOFIT module by Mead et al. (2015),

applied to the CDM+b power spectrum only.

In addition, neutrino effects on matter power spectrum have been shown to be sep-

arable from the baryon feedback ones (Mummery et al. (2017)), so we implement

baryonic effects by means of 4.5 as a multiplicative factor Fbf to the non-linear cold

matter power spectrum alone. Therefore, the HALOFIT module parameters provid-

ing the nonlinear mapping Pcc = H(P lin
cc ) will correspond to the “DM only” case (see

Table 4 in Mead et al. (2015)) as we are treating the baryonic suppression separately.

In short, our model for the nonlinear cold matter power spectrum will be given by:

P obs/th
cc (k, z) = H

[
P lin

cc (k, z)
]
Fbf(k, z|Mc, ηb, zc) . (4.11)

The accuracy of these fitting formulae will be taken into account in the error budget

as we will discuss shortly.

In fact, the covariance matrix Covij in eq. 4.10 accounts for both statistical and

systematic errors, as:

Covij(z) = CovCV
ij (z) + Covsys

ij (z) , (4.12)

where the statistical contribution from cosmic variance is simply given by:

CovCV
ij (z) =

(2π)2

k2
i ∆k Vs(z)

P 2
cc(ki, z) δij (4.13)

and therefore neglects any non-Gaussian component along with any beat-coupling or

super-sample covariance term from the finite observed volume (Sefusatti et al. (2006);

Hamilton et al. (2006); Takada & Hu (2013)).

For what concerns the systematic uncertainty affecting the theoretical predictions

for the matter power spectra, our standpoint assumes that such predictions are the

outcome of state-of-art numerical simulations (we do not consider here approaches

based on PT). As such they will suffer from systematic uncertainties related to the
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choice of the N -body code, the resolution, etc. but also on the accuracy of the fitting

function or the emulator built to exploit the numerical results in an efficient MC-based

likelihood analysis of future data-sets.

The code comparison by Schneider et al. (2016) estimates the systematic difference

among different codes at the 1% and 3% level respectively at k = 1 and 10 h/Mpc,

while suggesting a minimum box size and maximum particle mass in order to avoid

errors due to finite-volume effects and resolution beyond the percent level. Similar

comparisons are not available for numerical simulations of massive neutrino cosmolo-

gies although one can expect additional errors of the order of 1% related to the

problem of the proper setting of initial conditions (Zennaro et al. (2017)). Clearly,

we do not include in this budget the error on the numerical description of baryonic

effects since we deal with it explicitly: the evaluation of its impact is precisely the

goal of this work.

In addition to the systematic error intrinsic to the numerical approach, fitting func-

tions such as the various versions of HALOFIT (Smith et al. (2003); Bird et al. (2012);

Takahashi et al. (2012)) are also affected by their own uncertainty in reproducing the

N -body results on which they are based. Here, for instance, we use the newest version

of HALOFIT (Mead et al. (2015)). The latter is expected to provide an accuracy of

a few percent at k < 10 h/Mpc for the most common extensions to the Standard

Model only worsening to 10% for specific modified gravity models with chameleon

screening On the other hand, another viable approach is given by cosmic emulators.

The CosmicEmu code (Heitmann et al. (2010, 2009); Lawrence et al. (2010b,a)), in

its latest version, is claimed to predict the power spectrum at the 1% level up to

k = 8 h/Mpc over a significant region of the allowed parameter space. The accuracy

of the new Euclid Emulator (Euclid Collaboration et al. (2019b)) is approximately

∼ 1% at k < 1 h/Mpc, therefore comparable to the one obtained with N -body sim-

ulations. Finally, an alternative method, combining PT results at large scales and

fitting functions from high-resolution simulations at small scales, has recently been

proposed by Smith & Angulo (2019) and implemented in the NG-HALOFIT code,

characterised by an expected accuracy of 1% up to k = 0.9 h/Mpc.

In light of these results, we will take a conservative stand assuming that N -body-

based methods providing predictions for the nonlinear power spectrum, including

massive neutrino effects and common extensions to the Standard Model, are affected

by a systematic uncertainty of 3% at k = 1 h/Mpc and 4% at k = 10 h/Mpc for

our Planck fiducial cosmology at z = 0. In particular, following Audren et al. (2013),
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we describe the scale and redshift dependence of the relative, systematic error on the

cold matter power spectrum as:

α(k, z) ≡ ∆Pcc(k, z)

Pcc(k, z)
=

ln[1 + k/kσ(z)]

1 + ln[1 + k/kσ(z)]
5%, (4.14)

where kσ(z) is the non-linear scale at which the mass fluctuations, smoothed by a

Gaussian filter, are equal to unity, that is σR = 1 for R = 1/kσ. This functional

form for α(k, z) was also used by Audren et al. (2013), while a different form for

the same quantity has been adopted by Sprenger et al. (2019). At the value of

kmax = 0.5 h/Mpc adopted for the clustering analysis we have α ' 2% at redshift

zero, which is a conservative choice.

We expect any systematic error to correlate different wavenumbers. Following Baldauf

et al. (2016), we account for the systematic uncertainty with a contribution to the

covariance matrix Cij of the form:

Covsys
ij (z) = α(ki, z)α(kj, z) Pcc(ki, z) Pcc(kj, z) exp

[
− log2(ki/kj)

2σ2
α

]
, (4.15)

where the log-exponential term represents the correlation kernel. We choose σα =

log 5 as the log-scale correlation length. This choice is motivated by the fact that the

typical scale over which HALOFIT overestimates/underestimates the power spectrum

of a simulation is roughly half a decade (see for example fig. 1 of Mead et al. (2015)).

In this work we use the EMCEE6 package for the likelihood sampling.

4.3.2 Cosmic shear survey

For the shear survey we assume the same sky coverage of the clustering survey (fsky =

0.375). The distribution of source galaxies is taken to be:

P(z) ∝ zα exp

[
−
(
z

z0

)β]
, (4.16)

normalized so that the integral over all redshifts is equal to unity. We set α = 2,

β = 1.5 and zmean = 1.412 z0 = 0.9. We fit a multipole range going from ` = 10

up to ` = 2000, corresponding to an angle of 5 arcseconds or, equivalently, a scale

of ∼ 0.7 h/Mpc at the median redshift. We divide the sources into N = 3 redshift

bins, in such a way that each of them contains the same number of galaxies. We

assume a galaxy density of d = 30 arcmin−2 with a root mean square intrinsic shear

6http://dfm.io/emcee/current/
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of 〈γ2
rms〉

1/2
= 0.30. All the values and functional forms employed here are likely to be

in broad agreement with future surveys specifics like Euclid. We can easily estimate

the expected shot noise as:

N (ij)(`) = δij
〈
γ2

rms

〉
n−1
i , (4.17)

where ni = 3600 d (180/π)2 /N is the number of galaxies per steradian in the i-th bin.

We assume a Gaussian likelihood also for the shear power spectrum C
(ij)
` , given by:

lnLS ∝ −1

2

∑

i,j

∑

`,`′

(
C

(ij)
obs − C

(ij)
th

)
`

[
Cov(ij)

]−1

``′

(
C

(ij)
obs − C

(ij)
th

)
`′
, (4.18)

where Cov
(ij)
``′ represents the power spectra covariance matrix with the indices i, j

running from 1 to 3 labelling the redshift bins and `, `′ labelling the multipoles.

Consistently with the discussion in the previous Section, the total matter power

spectrum, relevant for weak lensing observables, is obtained as:

Pmm(k, z) = (1− fν)2 H
[
P lin

cc (k, z)
]
Fbf(k, z|Mc, ηb, zc)

+2 (1− fν) fν P lin
cν (k, z) + f 2

ν P
lin
νν (k, z), (4.19)

where again the HALOFIT operator only acts on the CDM+b auto-spectrum. For

the cross and neutrino spectra we use linear theory as their non-linear counterpart is

expected to give sub-percent contribution (Castorina et al. (2015)).

The error sources we consider here are cosmic variance, shape noise and the theoretical

error on the matter power spectrum propagated in the cosmic shear spectrum (4.23),

so that the total covariance matrix reads:

Cov
(ij)
``′ (z) = Cov

(ij),CV−SN
``′ (z) + Cov

(ij),sys
``′ (z) . (4.20)

The cosmic variance, in the Gaussian approximation, and shape noise contributions

is given by:

Cov
(ij),CV−SN
``′ =

2

2`+ 1
f−1

sky

[
C(ij)(`) +Nl(ij)(`)

]2
δ``′ . (4.21)

The systematic component is given instead by:

Cov
(ij),sys
``′ = E

(ij)
` E

(ij)
`′ exp

[
− log2(`/`′)

2 σ2
E

]
. (4.22)

where the relative uncertainty on the shear power spectrum is obtained by propagating

the uncertainty on the matter power spectrum through eq. 4.2 as:

E(ij)(`) ≡ ∆C(ij)(`)

C(ij)(`)
=

=

∫ ∞

0

dz
c

H(z)

W (i)(z) W (j)(z)

χ2(z)
α

(
`

χ(z)
, z

)
Pmm

(
`

χ(z)
, z

)
.(4.23)
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Here we have implicitly assumed that the error on Pmm is the same of that on Pcc,

since the other quantities are involved at the linear level and are therefore known

with high precision (∼ 0.1%).

The value for the correlation length σE for the uncertainty on the shear power spec-

trum is chosen consistently with the one on the matter power spectrum. To estimate

it we introduce a logarithmic modulation of period σα = log 5 in the matter power

spectra and computed the shear spectra integrating them. This is checked to be

translated in a modulation of period approximately one third of a decade in the shear

spectra: hence we set σE = log 3.

As a final remark, we should stress that, despite a mission like Euclid will measure

clustering and shear in the same patch of the sky, we never perform a combined

analysis of the two quantities. We will leave this for future work.

4.4 Results

In this Section we present our results. We divide it into three parts: in the first,

we verify if a properly chosen set of feedback parameters is able to reproduce a

suppression in the matter spectra similar to the effect of massive neutrinos; in the

second, we address the possible degeneracies between the neutrino mass and the three

feedback parameter; in the third, we investigate additional, possible degeneracies

between Mν and the intrinsic alignment parameter as it could be measured in weak

lensing surveys.

4.4.1 Fitting baryon feedback on massive neutrino cosmologies

The goal of this Section is to check whether there exists a set of reasonable feedback

parameters able to reproduce the same effects of massive neutrinos. We first generate

data for three fiducial cosmologies with a single massive neutrino species of mass

Mν = 0.15, 0.30, 0.45 eV. Then we fit each of these synthetic data with a model

that assumes a constant neutrino mass corresponding to the minimum allowed value

Mν = 0.056 eV (Lesgourgues & Pastor (2006)) but with varying baryon feedback

parameters.

The results of this test are summarised in Table 4.1, which reports the best-fit values

for the parameters, along with their 68% confidence level errors. The table also

shows the shift in the reduced chi-square with respect to the one obtained by fitting

the true model on the mock data. The first thing to notice is that clustering can

better distinguish between the two effects − massive neutrinos and baryon feedback
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Clustering Cosmic shear

Mν logMc ηb zc ∆χ2
red logMc ηb zc ∆χ2

red

0.15 eV 12.56+0.02
−0.02 5.5+2.3

−0.8 > 8.3 +0.03 12.77+0.11
−0.11 14.0+10.8

−8.9 > 4.8 +0.005

0.30 eV 13.33+0.02
−0.02 3.6+0.1

−0.1 > 10.0 +0.27 13.85+0.11
−0.11 3.3+2.9

−0.9 > 5.2 +0.009

0.45 eV 14.08+0.01
−0.01 2.6+0.1

−0.1 > 12.3 +0.95 14.86+0.09
−0.09 1.8+0.4

−0.3 > 5.1 +0.019

Table 4.1: Best-fit values of the baryon parameters obtained from the analysis of Section
4.4.1, where we fitted spectra with baryonic features onto spectra containing massive neu-
trinos. We also report the difference in the reduced chi-squared ∆χ2

red with respect to the
one obtained using the “true” model. Mc is in units of M�/h while the errors or lower limits
represent the 68% confidence level. The priors are logMc [M�/h] ∈ [12, 30], ηb ∈ [0, 30],
zc ∈ [0, 30].
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Figure 4.3: Contour plots showing the posterior probability distribution for the three feed-
back parameters. These are obtained when matter (blue and green, where we stop at 2 differ-
ent kmax) and shear (red) spectra for cosmologies with minimal neutrino mass (Mν = 0.056
eV) and baryon feedback are fitted on spectra in massive neutrino cosmologies (Mν = 0.45
eV in this plot) with no baryon feedback.

− even for the lowest neutrino masses. This can be addressed to the larger cosmic

variance that one has in weak lensing surveys, that dominates the total error at almost

all multipoles (see fig. 4.2). Furthermore, the characteristic scales are more clearly

defined for the three-dimensional power spectrum than for the shear one.
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Interestingly, we find some discrepancies in the contour plots in fig. 4.3: it seems

not possible to find a single set of feedback parameters able to describe the neutrino-

induced suppression in both the observables. In fact, the picture shows the allowed

(1- and 2-σ) regions for the feedback parameters inferred by cosmic shear (red) and

clustering when stopping the analysis at kmax = 0.5 h/Mpc (blue) or at kmax =

0.2 h/Mpc (green), for the case Mν = 0.45 eV. Not only the clustering contours do

not match their counterpart from cosmic shear, but there is a significant dependence

on the maximum wavenumber, kmax assumed for the analysis. Despite the three

degrees of freedom describing the baryonic effects, the fit is even more inaccurate at

the intermediate scales between 0.2 and 0.5 h/Mpc: for instance, when stopping at

k = 0.2 h/Mpc for Mν = 0.45 eV we obtained ∆χ2
red = 0.73, versus a ∆χ2

red = 0.95

when pushing up to k = 0.5 h/Mpc. This provides some first clue that a combined

analysis should be able to disentangle baryonic and neutrinos effects. However, since

we expect a high degree of correlation between the two observables, a detailed and

careful study of their covariance matrices must be carried out.

The redshift parameter zc remains largely unconstrained for any the neutrino mass.

Looking at the bottom right panel of fig. 4.1 can help realize how this happens. At

z = 1 (a characteristic redshift for future galaxy surveys) and at scales of 0.5 h/Mpc

(that is the maximum we consider for our analysis) the dependence of the power

spectrum on zc is very weak: the difference with respect to the “base” model lies

well within the theoretical uncertainty. Besides, the suppression almost saturates for

zc & 3, meaning that any value for this parameter is equivalent. The same holds true

also for the shear power spectrum (see the bottom right panel of figure 4.2): zc does

not play an important role, as the variation in the range zc = 1− 3 is of the order of

2% versus a theoretical uncertainty of ∼ 3% even at the highest multipoles.

The ηb parameter sets the scale at which the suppression occurs, so we expect it to

be degenerate with neutrino mass to some extent. In fact Table 4.1 shows this effect:

a higher neutrino mass implies a lower value for ηb. Moreover, the constraints on this

parameter get tighter with increasing neutrino mass. The reason is two-fold: first,

because of the strong power-law dependence of the feedback suppression on ηb (see

4.5); second, a small neutrino mass implies a lower suppression at large scales, where

cosmic variance is larger.

4.4.2 Baryonic feedback and massive neutrinos degeneracies

We now address directly the degeneracy between the neutrino mass and the param-

eters of the BCM by considering a likelihood analysis where all relevant parameters
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Input parameters Clustering Cosmic shear

Mν logMc ηb zc Mν logMc ηb Mν logMc ηb

0.15 13 0.5 1.0 0.150+0.006
−0.009 < 14.6 7 0.147+0.030

−0.045 < 13.3 < 5.6

0.15 13 0.5 2.0 0.150+0.004
−0.004 7 7 0.148+0.033

−0.041 < 13.4 < 8.3

0.15 13 1.0 1.0 0.150+0.003
−0.003 13.2+0.6

−0.3 0.9+0.2
−0.3 0.167+0.048

−0.058 < 13.2 < 5.5

0.15 13 1.0 2.0 0.150+0.003
−0.003 13.0+0.1

−0.1 1.0+0.1
−0.1 0.156+0.050

−0.054 < 13.3 < 2.3

0.15 14 0.5 1.0 0.150+0.003
−0.003 < 16.9 < 1.0 0.152+0.034

−0.037 13.9+0.3
−0.3 0.5+0.1

−0.1

0.15 14 0.5 2.0 0.150+0.003
−0.003 14.4+1.9

−1.1 0.4+0.3
−0.2 0.150+0.034

−0.037 14.0+0.3
−0.3 0.5+0.1

−0.1

0.15 14 1.0 1.0 0.150+0.003
−0.003 14.0+0.1

−0.1 1.0+0.1
−0.1 0.166+0.061

−0.059 13.8+0.4
−0.4 1.0+0.2

−0.2

0.15 14 1.0 2.0 0.150+0.003
−0.003 14.0+0.1

−0.1 1.0+0.1
−0.1 0.165+0.062

−0.062 13.9+0.4
−0.5 1.0+0.2

−0.2

0.30 13 0.5 1.0 0.300+0.005
−0.005 < 16.4 7 0.300+0.031

−0.051 < 13.5 < 8.3

0.30 13 0.5 2.0 0.300+0.007
−0.004 < 18.3 7 0.303+0.033

−0.055 < 13.4 < 11.3

0.30 13 1.0 1.0 0.300+0.003
−0.003 13.1+0.6

−0.3 0.9+0.2
−0.3 0.310+0.054

−0.080 < 13.4 < 6.9

0.30 13 1.0 2.0 0.300+0.003
−0.003 13.0+0.1

−0.1 1.0+0.1
−0.1 0.317+0.051

−0.084 < 13.7 < 5.1

0.30 14 0.5 1.0 0.300+0.003
−0.003 < 16.6 < 0.9 0.301+0.035

−0.040 13.9+0.3
−0.3 0.5+0.1

−0.1

0.30 14 0.5 2.0 0.300+0.003
−0.003 14.4+1.7

−1.1 0.4+0.3
−0.2 0.299+0.036

−0.041 14.0+0.3
−0.3 0.5+0.1

−0.1

0.30 14 1.0 1.0 0.300+0.003
−0.003 14.0+0.1

−0.1 1.0+0.1
−0.1 0.322+0.068

−0.086 13.7+0.6
−0.5 1.0+0.2

−0.2

0.30 14 1.0 1.0 0.300+0.003
−0.003 14.0+0.1

−0.1 1.0+0.1
−0.1 0.318+0.070

−0.085 13.9+0.6
−0.5 1.0+0.2

−0.2

Table 4.2: Best-fit values and 68% confidence level intervals for the parameters obtained
from the power spectrum, P (k), as well as from the cosmic shear, C(`), analysis. The mark
7 means that such parameter is not constrained at all. See Section 4.4.2 for details.

are allowed to vary simultaneously.

We consider 16 distinct fiducial models corresponding to all possible combinations

for each of the four parameters taking two values given by Mν = (0.15, 0.3) eV,

logMc [M�/h] = (13, 14), ηb = (0.5, 1), zc = (1, 2). We then run the MCMC like-

lihood analysis over the 4 parameters with a two-fold goal: check whether we are

able to recover the fiducial values, with special attention to the neutrino mass, and

examine the degeneracies among the parameters.

The values obtained for the parameters of major interest are listed in Table 4.2, while

the results relative to the neutrino mass are shown in fig. 4.4. The blue and red

data points with error bars mark the 68% confidence level on the neutrino mass as

determined, respectively, by matter clustering and cosmic shear. We see that we can

recover the right input M real
ν within 1-σ in all cases. The value of Mν found with

weak lensing is always within ∼ 0.25 σ from the correct one. Moreover, the values
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Figure 4.4: 1-D posterior probability distributions for neutrino mass for all the cases anal-
ysed in Section 4.4.2. The error-bars represent the 68% confidence level on Mν using
clustering (blue) and weak lensing (red). The left columns show the feedback parameters
used to generate the mock data. The top panels show the results when Mν = 0.15 eV, while
the bottom ones do the same for the case Mν = 0.30 eV. The grey shaded area in the top
panels mark the region Mν < 0.056 eV, forbidden by particle physics experiments.

of neutrino mass obtained through clustering are basically perfect (see Table 4.2).

The reasons are multiple. First of all, the matter power spectrum describes the 3-D

distribution of inhomogeneities, while the shear one is a 2-D projection of a 3-D field.

Thus, while the features of the matter power spectrum are well defined at each scale,

the scale mixing of 4.2 makes it difficult to associate a range of multipoles to a single

effect. Second, neutrinos affect all multipoles in the shear power spectrum, but only

the smallest scales in the matter one. Third, the redshift dependence of the two

effects is very different. The neutrino suppression in the CDM+b power spectrum is

insensitive to redshift: while the scale at which the “turnaround” of the spoon shape

damping slightly moves towards low-k values, the amplitude of such suppression stays

almost constant in time. On the other hand, Mummery et al. (2017) shows that the

suppression due to baryon feedback increases significantly at late times. Therefore

tomography plays a crucial role in this kind of analysis. Fourth, here we are assuming

perfect knowledge on of the functional forms both for neutrinos and baryon feedback

and that helps in recovering the correct input values with a very low level of bias.
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Figure 4.5: 1-D and 2-D posterior PDFs for Mν , logMc and ηb for 2 of the 16 runs described
in Sections 4.4.2 whose parameters are displayed in the plot. The blue contours show the
results for clustering, while the red contours represent the results from the cosmic shear
survey. The grey dashed lines show the “true” values, used to generate the mock data.

The absence of neutrino-baryon degeneracy in the 3D clustering case is evident in

fig. 4.5. There we show the contour plot for 2 of the 16 runs mentioned above. The

blue contours represent the 2-D posteriors on the parameters Mν , logMc and ηb,

marginalized over zc: the contours in the planes Mν − logMc and Mν − ηb are clearly

parallel to the parameter axes, implying that neutrino mass is not degenerate with

the BCM parameters. However, there exists a degeneracy intrinsic to the feedback

parameters, in particular in the logMc − ηb plane, that is very clear in the bottom

panel of fig. 4.5. On the other hand, the red contours, representing the results

obtained from weak lensing, show that a degeneracy is indeed present, i.e. the one

between Mν − logMc. However, it is still weak enough not to affect the measurement

on neutrino mass, which, as we mentioned above, is recovered well within the error-

bars.

Interestingly, there are some fixed triads of fiducial BCM parameters that cannot

be properly constrained neither by clustering nor by weak lensing (see Table 4.2).

For instance, when logMc = 13 weak lensing can only return upper limits for the

feedback parameters; or again low feedback activity (i.e. low logMc and low ηb) is

not constrained by clustering, since the scales affected by baryon feedback are mostly

left out from the analysis.

The error-bars from weak lensing are typically much larger than the ones for clus-
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tering, especially those on neutrino mass. This is expected for many reasons. First,

despite performing tomography, the integration along the line-of-sight causes the loss

of information on the z-direction. Second, cosmic variance limits the constraining

power more than in the clustering case (see figs. 4.1 and 4.2). Moreover, for the

clustering case we only considered the CDM+b power spectrum as observable: in-

troducing galaxy bias, Alcock-Paczynski effect and RSD would considerably enlarge

them.

4.4.3 Degeneracy with intrinsic alignment

In the last part of this work we want to investigate the possible degeneracy between

neutrino mass and intrinsic alignment in weak lensing measurements. Intrinsic align-

ment (IA) is one of the most significant astrophysical systematics in cosmic shear

surveys, as it can enhance the signal up to 10% at all multipoles (Troxel & Ishak

(2015)). It is due to the fact that orientations of nearby galaxies can be correlated

when they form and evolve in the same gravitational environment. As a result, in

a shear survey one observes not only the cosmological signal due to the large-scale

gravitational lensing potential, but, in addition, an intrinsic ellipticity term, so that:

γobs = γG + γI . (4.24)

Thus, when computing the power spectrum of this quantity, one obtains different

contributions (see also eq. 1.62):

Cij
obs(`) = Cij

GG(`) + Cij
GI(`) + Cij

II(`) +N (ij)(`), (4.25)

where we also included the shape-noise term N (ij)(`). The GG term is just eq. 4.2,

i.e. the cosmological signal. The latter two terms represent the correlation of shapes

between physically nearby galaxy pairs (II) (Heavens et al. (2000); Croft & Metzler

(2000)) and the correlation of galaxies that are aligned with those that are lensed by

the same structure (GI) (Hirata & Seljak (2004)).

To describe this systematic we use the linear alignment model of Hirata & Seljak

(2004): large-scale correlations or fluctuations in the mean intrinsic ellipticity field

of triaxial elliptical galaxies is to ascribe to large-scale fluctuations in the primordial

potential in which the galaxy formed during the matter dominated epoch. Thus we

expect a linear relation between IA and the matter power spectrum. Within this

99



paradigm, the IA terms read:

C
(ij)
GI (`) =

∫ ∞

0

dz
c

H(z)

W (j)(z) N (i)(z) +W (i)(z) N (j)(z)

χ2(z)
×

× FIA

(
`

χ(z)
, z

)
Pmm

(
`

χ(z)
, z

)
(4.26)

C
(ij)
II (`) =

∫ ∞

0

dz
c

H(z)

N (i)(z) N (j)(z)

χ2(z)
×

×F 2
IA

(
`

χ(z)
, z

)
Pmm

(
`

χ(z)
, z

)
, (4.27)

with

N (i)(z) = P(i)(z)
dz

dχ
= P(i)(z)

H(z)

c
(4.28)

FIA(k, z) = −AIA C1 ρc
Ωm

Dm(k, z)
, (4.29)

where ρc and Ωm are the critical density and the matter density parameter today,

Dm(k, z) is the total matter, scale-dependent linear growth factor, while C1 = 5 ×
10−14h−2 M−1

� Mpc3 is a normalization constant chosen such that the free parameter

AIA takes values around unity. For instance, Köhlinger et al. (2017) found AIA =

−1.81+1.61
−1.21 and AIA = −1.72+1.49

−1.25 for the analyses using 3-z and 2-z bins respectively,

while Troxel et al. (2018), although using another model, obtained AIA = 1.3+0.5
−0.6.

In fig. 4.6 we plot the relative difference on the shear power spectrum (we consider

a single tomographic bin for simplicity) of models with different neutrino masses and

models with different IA parameter with respect to a model with minimal neutrino

mass and AIA = 0. IA can either enhance (if AIA < 0) or damp (if AIA > 0) the signal

at all multipoles, and this effect may in principle mimic the neutrinos and introduce

a possible degeneracy with Mν .

We perform the MCMC with the usual method but this time setting the zc parameter

to a fixed value of 2. We choose to do so because none of the runs of the previous

analysis (Section 4.4.2) was able to constrain such parameter, due to the weak depen-

dence of the shear spectra on it (see the bottom right panel of fig. 4.2). Therefore,

we will have again 4 free parameters: Mν , logMc, ηb, AIA. We use the same grid of

parameter values of the previous Section, plus AIA = 1.3,−1.3.

The results for the main parameters of interest are listed in Table 4.3. For a clearer

view, fig. 4.7 reports the results for what concerns neutrino mass and the IA param-

eter in all the 16 different parameter sets. We grouped the results according to the

value of the input neutrino mass and the sign of AIA. We see that once again we are

100



101 102 103

`

−40

−20

0

20

(
C
`

C
b

as
e

`
−

1)
×

10
0

(%
)

Mν = 0.056 eV

Mν = 0.15 eV

Mν = 0.30 eV

Mν = 0.45 eV

AIA = −2.0

AIA = −1.0

AIA = +1.0

AIA = +2.0

Figure 4.6: Percentage difference on the shear power spectrum C(`) due to an increasing
neutrino mass (from red to blue) or an increasing IA (from green to yellow) with respect to
a model with minimal neutrino mass and no IA. We assume here a single tomographic bin.

able to recover the right input parameters. For the neutrino mass, the maximum dif-

ference with respect to the true value is ∼ 0.46 σ, while for AIA is ∼ 0.3 σ. Again, we

stress that we are assuming a perfect knowledge of the functional form and parameter

values for baryonic and neutrino effects as well as the IA model, which in principle

may be much more complicated than what we assumed.

Fig. 4.8 shows the contour plots for two combinations of parameters (the same of fig.

4.5). In green we show the 1-σ and 2-σ contours for the run with IA, while the red

ones are the same contours of fig. 4.5 (and therefore the posterior on AIA is absent).

The results and in particular the degeneracy patterns are rather similar: the only

particularly pronounced degeneracy lies in the Mν− logMc plane, but it is essentially

unaffected by IA, while those between the other feedback parameters are pretty weak.

An interesting point to discuss concerns the degeneracy between Mν and AIA. Fig.

4.9 shows the 1-σ and 2-σ contour lines in the Mν − AIA plane for the 16 different

parameter sets we used. There seems to be a degeneracy pattern which is weak for

positive AIA (odd columns) and stronger for negative AIA (even columns). In partic-

ular we find an anti-correlation between the two parameters. This is expected, since

Mν lowers the signal at almost all multipoles (see fig. 4.2), while the IA parameter

boosts it − if AIA is negative − or damps it − if AIA is positive − approximately in

the same way (see for instance fig. 4 in Köhlinger et al. (2017)). We would like to

stress that this degeneracy appears only as long as we use a single redshift bin, so

101



Input parameters Cosmic shear with IA

Mν logMc ηb AIA Mν [eV] logMc ηb AIA

0.15 13 0.5 1.3 0.142+0.041
−0.047 < 13.4 < 7.5 1.31+0.11

−0.11

0.15 13 0.5 -1.3 0.144+0.042
−0.054 < 13.6 < 5.0 −1.28+0.22

−0.19

0.15 13 1.0 1.3 0.166+0.059
−0.062 < 13.3 < 5.4 1.27+0.11

−0.11

0.15 13 1.0 -1.3 0.159+0.068
−0.070 < 13.3 < 5.7 −1.31+0.23

−0.20

0.15 14 0.5 1.3 0.148+0.046
−0.044 14.0+0.3

−0.3 0.5+0.1
−0.1 1.31+0.11

−0.12

0.15 14 0.5 -1.3 0.156+0.047
−0.049 14.0+0.3

−0.3 0.5+0.1
−0.1 −1.31+0.19

−0.20

0.15 14 1.0 1.3 0.165+0.067
−0.061 13.9+0.4

−0.4 1.0+0.2
−0.2 1.28+0.11

−0.11

0.15 14 1.0 -1.3 0.166+0.087
−0.065 13.9+0.5

−0.5 1.0+0.2
−0.4 −1.32+0.28

−0.21

0.30 13 0.5 1.3 0.298+0.044
−0.067 < 13.8 < 3.1 1.30+0.12

−0.12

0.30 13 0.5 -1.3 0.299+0.044
−0.063 < 13.5 < 9.6 −1.29+0.19

−0.18

0.30 13 1.0 1.3 0.324+0.060
−0.094 < 13.5 < 10.4 1.26+0.11

−0.11

0.30 13 1.0 -1.3 0.319+0.066
−0.097 < 13.5 < 3.7 −1.34+0.21

−0.20

0.30 14 0.5 1.3 0.298+0.047
−0.051 14.0+0.3

−0.3 0.5+0.1
−0.1 1.30+0.11

−0.11

0.30 14 0.5 -1.3 0.299+0.052
−0.056 14.1+0.3

−0.3 0.5+0.1
−0.1 −1.29+0.19

−0.19

0.30 14 1.0 1.3 0.320+0.106
−0.094 13.9+0.6

−0.8 1.0+0.3
−0.2 1.28+0.11

−0.11

0.30 14 1.0 -1.3 0.346+0.160
−0.099 14.0+2.7

−0.6 1.0+0.2
−0.9 −1.37+0.22

−0.18

Table 4.3: This table shows the 68% confidence level intervals for the parameters obtained
from the analysis of cosmic shear power spectra to which the IA contribution has been
added. See Section 4.4.3 for details.

performing tomography could help in alleviating or breaking it. In fact, while neutri-

nos affect all the redshift bins in a similar way, IA depends much more on the source

distribution and therefore has a different impact on different resdhift bins. Moreover,

although we do not show here the plots, another interesting point is the absence of

degeneracy between the IA parameter and the other feedback parameters logMc and

ηb. All combined, these results, limited to the analysis of matter 3D clustering, yield

the conclusion that in the BCM model the measurement of neutrino mass will not be

affected by baryon feedback nor by IA.
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Figure 4.7: Results obtained from the 16 different runs for a cosmic shear survey including
the IA effect. For clarity we have separated the runs with same neutrino mass and IA
parameters. The black vertical lines represent the true input value, the error-bars mark
the 68% confidence level for neutrino mass (red) and IA parameter AIA (green). The left
columns report the values of the feedback parameters used to generate mock data (zc has
been set to 2). The grey shaded area is forbidden by the solar neutrino experiments.
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Figure 4.8: Triangle plot showing 1-D and 2-D posterior PDFs for Mν , logMc, ηb and AIA

for two of the 16 runs described in Sections 4.4.2 and 4.4.3 whose parameters are displayed
in the plot. The red and green contours represent the results from the cosmic shear survey
with and without IA, respectively. The grey dashed lines show the “true” values, used to
generate the mock data.

103



0.05 0.15 0.25 0.35
Mν (eV)

0.5

1.0

1.5

2.0

A
IA

Mν = 0.15 eV
AIA = 1.3

logMc = 13
ηb = 0.5

0.05 0.15 0.25 0.35
Mν (eV)

-2.0

-1.5

-1.0

-0.5

A
IA

Mν = 0.15 eV
AIA = −1.3
logMc = 13

ηb = 0.5

0.05 0.15 0.25 0.35
Mν (eV)

0.5

1.0

1.5

2.0

A
IA

Mν = 0.15 eV
AIA = 1.3

logMc = 13
ηb = 1.0

0.05 0.15 0.25 0.35
Mν (eV)

-2.0

-1.5

-1.0

-0.5

A
IA

Mν = 0.15 eV
AIA = −1.3
logMc = 13

ηb = 1.0

0.05 0.15 0.25 0.35
Mν (eV)

0.5

1.0

1.5

2.0

A
IA

Mν = 0.15 eV
AIA = 1.3

logMc = 14
ηb = 0.5

0.05 0.15 0.25 0.35
Mν (eV)

-2.0

-1.5

-1.0

-0.5

A
IA

Mν = 0.15 eV
AIA = −1.3
logMc = 14

ηb = 0.5

0.05 0.15 0.25 0.35
Mν (eV)

0.5

1.0

1.5

2.0

A
IA

Mν = 0.15 eV
AIA = 1.3

logMc = 14
ηb = 1.0

0.05 0.15 0.25 0.35
Mν (eV)

-2.0

-1.5

-1.0

-0.5

A
IA

Mν = 0.15 eV
AIA = −1.3
logMc = 14

ηb = 1.0

0.15 0.30 0.45 0.60
Mν (eV)

0.5

1.0

1.5

2.0

A
IA

Mν = 0.30 eV
AIA = 1.3

logMc = 13
ηb = 0.5

0.15 0.30 0.45 0.60
Mν (eV)

-2.0

-1.5

-1.0

-0.5

A
IA

Mν = 0.30 eV
AIA = −1.3
logMc = 13

ηb = 0.5

0.15 0.30 0.45 0.60
Mν (eV)

0.5

1.0

1.5

2.0

A
IA

Mν = 0.30 eV
AIA = 1.3

logMc = 13
ηb = 1.0

0.15 0.30 0.45 0.60
Mν (eV)

-2.0

-1.5

-1.0

-0.5

A
IA

Mν = 0.30 eV
AIA = −1.3
logMc = 13

ηb = 1.0

0.15 0.30 0.45 0.60
Mν (eV)

0.5

1.0

1.5

2.0

A
IA

Mν = 0.30 eV
AIA = 1.3

logMc = 14
ηb = 0.5

0.15 0.30 0.45 0.60
Mν (eV)

-2.0

-1.5

-1.0

-0.5

A
IA

Mν = 0.30 eV
AIA = −1.3
logMc = 14

ηb = 0.5

0.15 0.30 0.45 0.60
Mν (eV)

0.5

1.0

1.5

2.0

A
IA

Mν = 0.30 eV
AIA = 1.3

logMc = 14
ηb = 1.0

0.15 0.30 0.45 0.60
Mν (eV)

-2.0

-1.5

-1.0

-0.5

A
IA

Mν = 0.30 eV
AIA = −1.3
logMc = 14

ηb = 1.0

Figure 4.9: This picture shows the degeneracy between neutrino mass and the IA parameter
for the 16 different cases analysed in Section 4.4.3. The top plots have Mν = 0.15 eV, while
the bottom ones have Mν = 0.3 eV; odd columns have AIA = 1.3, even columns have
AIA = −1.3 (the dashed lines help the view in marking the true value). The parameters of
the set are written inside each panel. The contour lines shown are 68% and 95% confidence
level, while the dashed black lines show the true values for the parameters. It is clearly
visible that in some cases the degeneracy between the two parameters is totally absent, but
even where is present it will be likely not to bias the measurement on neutrino mass.

4.5 Discussion

In this Chapter we have shown that the effect of baryons on the matter and shear

power spectra can be disentangled at the matter perturbation level by using a tomo-

graphic analysis. To do so, we performed a likelihood analysis for the matter and

shear power spectra using the MCMC method.

In our analysis, we accounted for both statistical error, i.e. cosmic variance, as well

as the systematic error affecting the theoretical model. Assuming that all theoretical

predictions are based on fitting functions or emulators based on numerical N -body

simulations, the systematic uncertainty reflects the limitations of this approach in pro-
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viding an accurate description of the non-linear matter power spectrum. We adopted

the formula by Audren et al. (2013) to describe the scale-dependence of this system-

atic error, negligible at the largest, linear scales while growing monotonically until

reaching a ∼ 2% level at scales of 0.5 h/Mpc at z = 0. In addition we follow Bal-

dauf et al. (2016) to account for the correlation such error induces among different

wavenumbers.

We investigated directly the effect of baryon feedback, another important source of

systematic error, using the BCM by Schneider & Teyssier (2015). Their fitting formula

depends on three parameters (Mc, ηb, zc) with well-established physical meanings.

The main focus of our work has been the specific study of their degeneracies with

neutrino masses.

As a first test, we explored the possibility that baryonic effects alone could mimic the

characteristic suppression of power at small scales due to a non-vanishing neutrino

mass. As expected, for both clustering and cosmic shear, we found that growing

values of the parameter logMc, the mass below which halos are emptied from their

gas, can reproduce, to some extent, the effect on an increasing neutrino mass. How-

ever, the two probes, matter clustering and cosmic shear, interestingly prefer quite

different values of this parameter, highlighting the relevance of their combination. In

addition, for matter clustering in particular, the recovered value of the logMc param-

eter strongly depends on the maximum wavenumber included in the analysis. These

differences can be up to ∼ 9 σ for Mν = 0.45 eV for the Euclid-like observational set-

up we considered, a clear hint that massive neutrinos and baryonic feedback effects

will be indeed distinguishable in upcoming surveys.

As a second test, the central analysis carried out in this work, we studied directly the

degeneracy between the two effects allowing the parameters of the baryonic feedback

model and the neutrino mass to vary simultaneously. We performed this Monte-

Carlo analysis for 16 different sets of fiducial parameters in order to properly explore

how such degeneracy depends on the assumed baryonic feedback model, a priori

unknown. In all cases, we were able to recover the input neutrino mass. In particular,

in the matter clustering case, the degeneracy between neutrino mass and feedback

parameters is completely absent, while an interesting correlation exists in the plane

logMc-ηb. For the weak lensing shear power spectrum, the convolution of the matter

power spectrum with the lensing kernel smooths-out the different scale-dependent

features of the two effects leading to a noticeable degeneracy between the neutrino

mass Mν and the baryon feedback parameter logMc. Despite this fact, the estimate
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of Mν by cosmic shear is still unbiased, with a maximum difference with respect to

the true value of ∼ 0.25 σ.

Finally we considered how these results are affected by the additional systematic

represented by the IA effect in weak lensing survey. We employed the linear alignment

model by Hirata & Seljak (2004) to introduce the IA effect on the shear spectra. For

this part we fixed the zc parameter to a value of 2: this choice is motivated by the

fact that in the previous part of the analysis we were never able to constrain it, as

its effects are pretty small on the spectra and scales that we consider. The MCMC

analysis was therefore performed with 4 free parameters: Mν , logMc, ηb, AIA. Again,

we were able to recover the right input values for what concerns neutrino mass and the

AIA parameter. The posterior PDFs and contours for the cases with and without IA

are almost identical (see fig. 4.8), while we find a degeneracy pattern in the Mν−AIA

plane (fig. 4.9) that is more pronounced when AIA is negative. Also, such parameter

seems not to suffer from any degeneracy with the other feedback parameters.

In conclusion, if the BCM is used as a baryon feedback fiducial model, measurements

on the neutrino mass from future surveys are likely not be affected by biases due to

the degeneracy between neutrino masses and the feedback parameters.

4.6 Future work

It is clear that the work presented in this Chapter is a first step in tackling a quite

complex problem that requires much further investigation. A complete analysis would

require to allow the whole set of cosmological parameters to vary within some prior,

as well as a bias model and redshift-space distortions on the galaxy clustering side.

Another interesting step would of course be to explore the possibility to cross-correlate

the two observables, like in Euclid Collaboration et al. (2019a), a work that would

require a careful investigation of the cross-covariance.

We are currently developing a simple extension to the work just presented (Parimbelli

et al. (in prep.)). In this new analysis, we include non-standard DM models such

as warm dark matter (WDM) and mixed dark matter (MDM), where part of dark

matter is cold and part warm. Moreover, we are planning to incorporate also the

effects of isocurvature perturbations, like primordial black holes (PBH). The effect of

these non-standard scenarios are estimated by taking the ratio of the power spectra

from N -body simulations, specifically run varying the WDM mass and fraction and

the isocurvature perturbation parameters, with respect to the ΛCDM counterpart
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with the same initial conditions. Moreover, to apply this procedure to weak lensing

surveys, we need several snapshots at different redshifts.

Once generated the data (following the procedure exposed in Section 4.3), we will

assess the degeneracies among the parameters of the different models, evaluating the

impact of using covariance matrices measured from N -body simulations in light-cones

(e.g. Schneider et al. (2020)) so that it includes non-Gaussian contributions, the gain

in constraints by varying the number of redshift bins and the amplitude and the shape

of the systematic uncertainty in the non-linear power spectrum (eq. 4.14).
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5
Neutrino clustering in the Milky Way

5.1 Detecting relic neutrinos with clustering

As already mentioned in previous Chapters, so far we only have indirect indications of

the existence of a cosmic neutrino background (CνB). These mainly come from CMB

experiments, that constrained the number of relativistic species in the early Universe

(Planck Collaboration et al. (2018)) and found that it was very close to the expected

theoretical value Neff = 3.045 (Mangano et al. (2005); de Salas & Pastor (2016);

Gariazzo et al. (2019)). The imprint of these relativistic species on the CMB spectrum

is compatible with those of free-streaming relics (see e.g. Audren et al. (2015)). A

direct probe of the existence of a background of relic neutrinos would of course be a

major discovery and a confirmation of what we know about cosmology and neutrinos.

In particular, it would rule out scenarios where neutrinos decay at some stage of

cosmic time (see e.g. Beacom et al. (2004); Escudero & Fairbairn (2019); Chacko

et al. (2020)) or where they are produced with unexpectedly low abundance (e.g. in

low reheating scenarios, de Salas et al. (2015)), while another form of dark radiation

would contribute to Neff ' 3. Interestingly however, the effective sound speed and

the anisotropic stress parameters, measured from CMB, are in good agreement with

the values that they would have if these species were active neutrinos as described by

the Standard Model of particle physics (Planck Collaboration et al. (2016)).

108



The most promising method for obtaining a direct detection of the CνB is to ex-

ploit neutrino capture on β-decaying nuclei (Weinberg (1962)), in particular tritium

(Cocco et al. (2007)). The detection would consist of a small peak in the electron en-

ergy spectrum of tritium due to the capture of relic neutrinos, just above the endpoint

of β decay. Despite the experimental challenges represented by the required energy

resolution (that must be comparable to the absolute value of the neutrino mass) and

the high number of background events, coming from β decay, that must be distin-

guished from the signal, a project named PTOLEMY (Baracchini et al. (2018)) is

nowadays starting to test innovative technology that could lead, for reasonable values

of the neutrino masses, to the first direct observation of the CνB (Betti et al. (2019)).

A possible detection of the CνB by PTOLEMY would also offer the opportunity to

study for the first time the interactions of non-relativistic neutrinos 1.

The number of events detected by an experiment scales linearly with the neutrino

number density at the Earth’s position; therefore it is crucial to have a precise knowl-

edge of how many relic neutrinos are present today here. The standard cosmological

model predicts an average number density of 56 cm−3 per family and per degree of

freedom, making them the second most populous species in the Universe after pho-

tons. Relic neutrinos, however, possess a very small energy today compared to their

mass (of the orders of 10−4 eV and 0.1 eV, respectively). Using the constraints on the

mass splittings (e.g. Tanabashi et al. (2018)), we see that at least two of the three

species are non-relativistic at present time. Therefore their average number density

can be enhanced because of the gravitational attraction of the matter content of the

Galaxy, as well as other neighbouring galaxies and galaxy clusters, provided that their

masses are large enough to let them cluster at small scales. The calculation of the

clustered number density of relic neutrinos was proposed for the first time in Singh

& Ma (2003), using a method based on the collisionless Boltzmann equation, and in

Ringwald & Wong (2004), using a method called N -one-body simulations. The latter

case consists in computing the trajectories of several (N) independent test particles

(one-body) in the evolving gravitational potential of the Galaxy, starting from some

high redshift until today, and then reconstructing the profile of the neutrino halo

according to the final positions of all the test particles. The same method has been

adopted later in de Salas et al. (2017); Zhang & Zhang (2018), where an updated

treatment of the DM and baryonic content of the Milky Way was considered.

1Given the values of the mass splittings provided by neutrino oscillation experiments, the second-
to-lightest neutrino mass eigenstate must be heavier than at least 8 meV (see e.g. Capozzi et al.
(2018); de Salas et al. (2018); Esteban et al. (2019)), while the mean energy of relic neutrinos is of
the order of 10−4 eV.
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In this Chapter, we expose the work published in Mertsch et al. (2020), where we

improve the calculation presented in de Salas et al. (2017). For the first time, nearby

astrophysical objects, whose presence may play a relevant role in the clustering pro-

cess, are taken into account in the computation of the gravitational potential: in

particular, we consider the contributions carried by the Andromeda galaxy and the

Virgo cluster. In order to perform this analysis, we need to relax the assumption of

spherical symmetry that has been used in previous works. In Sections 5.2 to 5.4 we

discuss the theoretical aspects of the calculation and the practical implementations

in our code. The treatment of the matter content of the two galaxies and the Virgo

cluster is presented in Section 5.5. This Section is accompanied by Appendix B, which

explains how we solved the Poisson equation for the density profiles employed. In the

final Section 5.6 we present and discuss our results on the local number density of

relic neutrinos.

5.2 Neutrino gravitational clustering

The motion of the test particle is computed in a background where the gravitational

potential is time-dependent and the Universe expands. On galaxy scales and at recent

times, the behavior of at least the two heaviest neutrino states is well captured by

Newton’s theory, in which the motion equations can be obtained from the following

Lagrangian:

L = a

(
1

2
mνv

2 −mνΦ(x, t)

)
, (5.1)

where a is the scale factor, mν is the mass of the test neutrino, v its velocity and Φ

the gravitational potential. The corresponding Hamiltonian, expressed in Cartesian

coordinates x, y, z and the corresponding conjugate momenta px, py, pz, is given by:

H =
1

2amν

(
p2
x + p2

y + p2
z

)
+ amνΦ(x, t) . (5.2)

From eq. 5.2, the equations of motion are computed. Denoting with a dot the

derivative with respect to conformal time dτ = dt/a(t), we find:

pi = amν ẋi, ṗi = −amν
∂Φ(x, t)

∂xi
, with xi = x, y, z . (5.3)

For a spherically symmetric potential, like the case considered in previous works,

the equations of motion simplify significantly due to the conservation of angular

momentum and are best expressed in spherical coordinates. A great simplification

110



can anyway be obtained if one rescales the momenta to eliminate the neutrino mass

from the equations:

ui = pi/mν , (5.4)

thus replacing pi → ui and mν → 1 in the Hamilton equations above. Solving for ui

will allow to obtain the results for any neutrino mass, provided that the parameter

space volume is rescaled appropriately (see Ringwald & Wong (2004); Zhang & Zhang

(2018)).

To solve the equations, we need to find the gravitational potential Φ of the Galaxy

as well as those of other nearby objects like Andromeda and Virgo. We make use of

the Poisson equation to obtain the contribution to the total gravitational potential

of each component described by its energy density ρ:

∇2Φ(x, t) = 4πGa2ρ , (5.5)

where the Laplacian operator is in comoving coordinates.

The linearity of the Poisson equation allows us to solve it separately for the different

constituents of the total matter density. When assuming spherical symmetry, the

potential depends only on the distance from the center of the halo, r, so that it is

possible to have an analytic expression for the derivative of the potential from eq.

5.5:
∂Φ

∂r
(r, z) =

4πGa2

r2

∫ r

0

ρhalo(x, z)x2 dx =
G

ar2
Mhalo(r, z) . (5.6)

When the density is instead not symmetric, the Poisson equation must be solved

numerically. The most convenient way is to use Fourier transforms, as we discuss

in the Appendix B. Once Φ is known, one must plug its partial derivatives in the

Hamilton equations above. We discuss in detail how we perform this calculation in

Section 5.5.

The N -one-body simulation method requires the solution of the equations of motion

of many test particles with different initial conditions. When dealing with the spher-

ically symmetric case, one has to sample different values for the parameter space of

only three quantities: the initial distance from the center of the halo, the initial mo-

mentum of the particle, and the initial angle between the initial momentum vector

and the radial direction. Moreover, the spherical symmetry of the problem ensures

that the motion of each test particle will always be contained in a plane. To calculate

the number density profile of the relic neutrino halo (and of its particular value at

Earth) one must take into account the final position of all test particles weighted by

their initial phase space, see Ringwald & Wong (2004). If one wants to relax the
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spherical symmetry assumption, however, the final position will have to be computed

as a function of six input variables (three spatial coordinates and three momentum

coordinates). Since the number of test particles required to obtain a sufficiently pre-

cise result scales exponentially with the dimension of the phase-space, repeating the

calculation without spherical symmetry would require unreasonable computational

time. Moreover, the majority of the simulated test particles will end up very far from

the position of the Earth, and will give very little or no contribution to the local

density of relic neutrinos.

Fortunately, a simple way to overcome this problem has been known for many years

in the context of cosmic ray propagation, i.e. the back-tracking technique. Instead

of forward-tracking the particles starting from homogeneous and isotropic initial con-

ditions at high redshift, it is more efficient to consider only those particles that are

at Earth today. This is done by inverting the arrow of time in the equations, and

back-tracking the particles from our position today. Afterwards, an initial phase-

space volume and an appropriate statistical weight to each trajectory are assigned.

The main advantage of this method is that one only needs to sample over the 3-

momentum of the neutrinos reaching the Earth today, since their position is fixed

by assumption and does not depend on the assumed symmetries of the astrophysical

environment. The computational time will thus remain comparable to that of pre-

vious works assuming spherical symmetry, while allowing us to introduce a complex

distribution of matter with many objects.

The drawback of this approach is that one cannot obtain the shape of the neutrino

halo around the Earth, but only the local number density. To estimate the shape

of the neutrino profile, multiple simulations at different positions (in three dimen-

sions) are required. More details on the back-tracking method and on our specific

implementation are discussed in the next Sections.

5.3 Forward versus backward N -one-body method

The forward-tracking technique has been used in previous works (de Salas et al.

(2017)), following Appendix A.3 in Ringwald & Wong (2004) and using the kernel

method of Merritt & Tremblay (1994). In this approach, the number density is

reconstructed from a set of N particles which are representative of the phase-space

interval (ra, pr,a, pT,a)i → (rb, pr,b, pT,b)i. Each trajectory is given a weight wi (i =

1, · · · , N):

wi =

∫ (rb,pr,b,pT,b)i

(ra,pr,a,pT,a)i

∫

θ,φ,ϕ

f(p) d3r d3p, (5.7)
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where f(p) is assumed to be the homogeneous and isotropic Fermi-Dirac distribution

(we neglect small linear perturbations far from the Milky Way), while we used d3r =

r2 sin θ dθ dφ dr and d3p = pT dpT dpr dϕ, with pT the transverse momentum and pr

the radial momentum. The final number density at radius r is then given by:

n(r) =
N∑

i=1

wi
ξ3
K(r, ri, ξ), (5.8)

where the Gaussian kernel is:

K(r, ri, ξ) =
ξ2

(2π)3/2rri
exp

(
−r

2 + r2
i

2ξ2

)
sinh

(
rri
ξ2

)
(5.9)

smooths the particles around the surface of a sphere in order to get a profile that is

spherically symmetric. The parameter ξ is the window width (Merritt & Tremblay

(1994)) and its value can be optimized for each step in the simulation.

When switching to the back-tracking method, we take the opposite perspective. We

fix the initial spatial coordinates to the Earth’s position and draw trajectories from

samples of the neutrino momentum today. At that time and location, the phase-

space distribution of neutrinos is no longer close to the Fermi-Dirac distribution of

the average neutrino background, because of the non-linear dynamics inside the halo.

Fortunately, we can make use of Liouville’s theorem to compute the statistical weight

of each phase-space volume element around the Earth to that at the other end of

the trajectory, where neutrinos still obey the average homogeneous and isotropic

Fermi-Dirac distribution. Liouville’s theorem (Goldstein et al. (2002)) implies the

conservation of phase-space density along the solutions of the equations of motions,

i.e. yields the Boltzmann equation:

∂f

∂t
+ ẋ · ∇xf + ṗ · ∇pf = 0 . (5.10)

After tracking a particle from redshift z = 0, the Earth position x⊕ and some arbitrary

momentum pj(0) back to redshift zback, position xj(zback) and momentum pj(zback),

we can compute the phase-space distribution today and in the right direction by

applying:

f [x⊕,pj(0), 0] = fback [xj(zback),pj(zback), zback] , (5.11)

where fback can be identified with the Fermi-Dirac distribution of the average neutrino

background. This gives us f today in any direction. The final number density is then

obtained by integrating over the observed momentum pj(0), without any need for

Gaussian smoothing.
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We choose zback = 4, after verifying that the value of zback has no significant impact

on the final number density, see Section 5.6. Note that this Liouville mapping is

routinely used when back-tracking cosmic rays, see e.g. Mertsch (2019).

In both methods, after obtaining the local number density nνi(x⊕, z = 0) for each

mass eigenstate i, one can compute the clustering factor:

fi ≡ nνi/nν,0 , (5.12)

where nν,0 = 112 cm−3 is the cosmological average number density for one family of

neutrinos plus anti-neutrinos.

5.4 Computing neutrino clustering with back-tracking

To solve the equations of motion, we use a symplectic ODE solver that also conserves

phase-space volume, the symplectic rkn sb3a mclachlan solver, that is the sym-

metric B3A method of the Runge-Kutta-Nyström scheme of sixth order (McLachlan

(1995)) from the odeint package of the Boost libraries2 (Schäling (2014)).

The symplectic solvers of the odeint package require the equations of motion to be

separable, that is the time-derivatives of the coordinates are functions of the conjugate

momenta only and vice versa, and autonomous, that is all right-hand sides must not

depend on time t explicitly. The latter requirement represents in principle a problem,

since both the background expansion and the redshift evolution of the gravitational

potential introduce a time-dependence in the Hamiltonian, eq. 5.2. A common fix

consists of treating time as an extra variable to be integrated on top of ui(t) and xi(t),

with a trivial derivative ṫ = 1 (cfr. e.g. Blanes & Moan (2001)). With this addition,

the system is formally autonomous and still separable. Finally, we note that if we

substitute time for the new variable s:

s(z) = −
∫ z

0

dz

ȧ
= −

∫ z

0

dz
(1 + z)

H(z)
, (5.13)

the equations of motion 5.3 take on the even simpler form:

dxi
ds

= ui ,
dui
ds

= −a2 ∂φ

∂xi
, (5.14)

allowing to further speed up the computation.

Although back-tracking dramatically reduces the number of particles to be simulated,

we still need a large number of trajectories, obtained by solving eqs. 5.14 for several

2http://www.boost.org
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initial conditions ui(z = 0). This requirement is most efficiently fulfilled in a “Single

Instruction, Multiple Data” (SIMD) architecture, modern graphic processing units

(GPUs) being an example. We use the CUDA framework3 via the Thrust library4

which can be interfaced with odeint’s solvers. In order to increase speed, we pre-

compute the baryonic contributions to the gravitational potential (see next Section)

at redshift z = 0 on a grid in cylindrical coordinates R and z, load them as textures

onto the GPU, bi-linearly interpolate them between grid points, and finally scale the

results up to higher redshifts z. For the results below, we isotropically sample the

arrival directions of neutrinos (20 points for polar angle, 20 points for azimuth) and

logarithmically sampled in momentum (100 points over 3 decades), which leads to

a grid of 4 × 104 velocities. We have also checked that this is sufficient for getting

well-converged clustering factors even in the non-axisymmetric case (Milky Way DM

plus baryons plus Andromeda and Virgo). All the computations were performed on

an Nvidia Quadro P6000. Depending on the number of different contributions to the

gravitational potential, back-tracking the 4 × 104 particles from redshift z = 0 to

z = 4 required between 120 and 500 minutes.

5.5 Density profiles and gravitational potential

In this Section we describe how we implement the gravitational potential of the objects

that we include in our analysis. For the Milky Way, we consider a spherical DM halo

plus a number of baryonic components, which follow axial symmetry. Beyond the

Milky Way, we consider spherical DM halos for the Andromeda galaxy and the Virgo

Cluster, which are the largest objects relatively close to Earth that can have an

impact on the local density of relic neutrinos. Finally, we report technical details

on the discretization of the grid that we adopt in the numerical calculation for the

interpolation of the derivatives.

3http://developer.nvidia.com/cuda-zone
4http://thrust.github.io
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5.5.1 The Milky Way

For the DM halo of the Milky Way, we consider two distinct cases: a NFW (Navarro

et al. (1996)) and an Einasto (Einasto (1965)) profile, which read, respectively:

ρNFW(r) =
ρ0

r

Rs

(
1 +

r

Rs

)2 for r < Rvir, (5.15)

ρEin(r) = ρ0 exp[−(r/Rs)
α], (5.16)

where ρ0 is the normalization, Rs is the scale radius, Rvir is the virial radius of the

NFW profile (related to Rs through the concentration parameter c = Rvir/Rs), and

α is an additional parameter for the Einasto profile that controls the change in the

slope of the density.

As far as baryons are concerned, we follow the treatment of Misiriotis et al. (2006) and

adopt five separate components: stars, warm and cold dust, atomic HI and molecular

H2 gas. The density of stars is parametrized through a disk plus a bulge. The bulge

of the Milky Way has been shown to have a triaxial shape (Portail et al. (2015)).

However, since we are mainly interested in the neutrino clustering at the Earth posi-

tion, which is located at distances (8.2±0.1 kpc, Bland-Hawthorn & Gerhard (2016))

significantly larger than the bulge size, we can safely approximate it as a sphere. In

particular, again following Misiriotis et al. (2006), we assume for the bulge profile a

Sersic law with index n = 4 (i.e. a de Vaucouleurs profile):

ρDeVauc(r) = ρ0 exp

[
−A

(
r

Rb

)1/4
] (

r

Rb

)−7/8

, (5.17)

where A = 2n− 1/3 ≈ 7.67 and we take Rb = 0.74 kpc.

The other baryonic components are assumed to be distributed according to a double

exponential disk profile:

ρexp(R, z) = ρ0 e
−R/Rs e−|z|/zs . (5.18)

The present day values of the parameters of the different profiles are obtained as

follows. The parameters related to the DM component of the Milky Way at z = 0

are obtained by fitting the DM contribution to the rotation curve data as reported in

Pato & Iocco (2015), following the same procedure already adopted in de Salas et al.

(2017) 5. Better estimates of the Galactic rotation curve are nowadays accessible

5Notice that to switch from our parametrization of the Einasto profile in eq. 5.16 to the one used

by de Salas et al. (2017), one has to substitute ρ0 → ρ0 exp (−2/α) and Rs → Rs (2/α)
1/α

.
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NFW Einasto

Mvir [M�] 2.03× 1012 1.17× 1012

ρ0 [M�/kpc3] 1.06× 107 2.70× 108

Rs [kpc] 19.9 0.737
Rvir [kpc] 333.5 7

α 7 0.45

Table 5.1: DM density parameters for the Milky Way at z = 0, obtained by fitting the data
from Pato & Iocco (2015), following the same procedure as in de Salas et al. (2017).

thanks to the second data release of the ESA/Gaia mission (Brown et al. (2018)) (see

e.g. de Salas et al. (2019) for an analysis of the DM contribution to the rotation curve

data presented in Eilers et al. (2019)). However, given the limited radial extent of

the data, instead of fixing the total DM mass to the values predicted either in Pato

& Iocco (2015) or de Salas et al. (2019), we use an estimate based on orbiting Milky

Way satellites up to ∼ 300 kpc from the center of the Galaxy (Watkins et al. (2010)).

Concerning the baryon components, we take the warm dust, cold dust, H2 and HI

profile parameters from Misiriotis et al. (2006), as well as the scale parameters of

the bulge and the disk. For the central density of the bulge we use the value given

by Bland-Hawthorn & Gerhard (2016). They also provide an estimate for the total

stellar mass in the Galaxy (5× 1010 M�). From this number we can derive the total

mass of the stellar disk by subtracting the total mass of the bulge. The parameter

values that we adopt are listed in Tables 5.1 and 5.2.

Regarding the HI density profile, observations (e.g. Kalberla et al. (2005); McMillan

(2017)) have shown that the distribution of neutral hydrogen in the outskirts of the

Galaxy follows an exponential profile, as we assume in this work; conversely, the

central 2.75 kpc (McMillan (2017)) seem to be devoid of it. This feature would in

principle prevent us from using an analytical formula for our potential However, we

found that neglecting the central hole in the hydrogen distribution, i.e. extrapolating

the exponential profile until the origin of the coordinates, would just cause an increase

of the total HI mass of 1%, which is, in turn, an overestimate of 0.01% on the total

mass of the Milky Way. We then safely ignore such a feature in the HI profile, and

we consider it to be also a double exponential disk, following eq. 5.18.

In order to compute the clustering factor today, we also need the time evolution of

the density profiles. As we check a posteriori in Section 5.6, most of the clustering

happens at small redshifts, so there is no need to compute the density profiles very

precisely at all times. The evolution in redshift of the density profiles is accounted for
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ρ0 [M�/kpc3] Rs [kpc] zs [kpc] Mtot [M�]

Bulge 1.79× 1012 0.74 7 1.55× 1010

Disk 3.40× 109 2.4 0.14 3.45× 1010

Warm dust 1.80× 104 3.3 0.09 2.22× 105

Cold dust 2.23× 106 5.0 0.1 7.01× 107

H2 2.00× 108 2.57 0.08 1.33× 109

HI 7.90× 106 18.24 0.52 1.72× 1010

Table 5.2: Density profile parameters for the baryonic components at z = 0. We also
provide the total mass for each component. All the components have a profile described
by eq. 5.18, except for the bulge, which follows a de Vaucouleurs profile (eq. 5.17). The
scale radii and heights are taken from Misiriotis et al. (2006), as specified in the main text.
The redshift evolution of the total mass is found following the N -body simulation results
of Marinacci et al. (2014), while we assume that Rs and zs do not evolve in time.

as follows. We assume the total virial mass of the DM halo to be constant in redshift,

while the concentration parameter changes according to Dutton & Macciò (2014):

log βcvir(z) = a(z) + b(z) log

(
Mvir

1012 h−1 M�

)
, (5.19)

where β is a parameter (assumed constant in time) which denotes the offset of the

Milky Way concentration with respect to the average one. The functions a(z) and

b(z) are different for the NFW and Einasto profiles. For the NFW they correspond

to a(z) = 0.537+(1.025−0.537) exp [−0.718 z1.08], b(z) = −0.097+0.024 z, while for

the Einasto profile a(z) = 0.459 + (0.977−0.459) exp [−0.490 z1.303], b(z) = −0.130 +

0.029 z.

The time evolution of the virial radius is obtained from

Mvir = 4πa3

∫ Rvir(z)

0

ρ(x, z)x2 dx, (5.20)

Rvir(z) =

(
3Mvir

4π∆vir(z)ρcrit(z)

)1/3

, (5.21)

where ρcrit = 3H2
0/(8πG) is the critical density of the Universe and ∆vir(z) = 18π2 +

82 [Ωm(z)− 1] − 39 [Ωm(z)− 1]2 (Bryan & Norman (1998)) for the NFW. For the

Einasto profile it is instead fixed to ∆vir = 200, since this was the approach followed

by Dutton & Macciò (2014) to obtain the numerical values of the corresponding a(z)

and b(z) equations. Combining eqs. 5.19, 5.20 and 5.21 allows us to find the scale

radius as a function of redshift. The cosmology used in this work has h = 0.6766

and Ωm = 0.3111 according to the Planck (TT,TE,EE+lowE+lensing+BAO) best-fit

model (Planck Collaboration et al. (2018)).

118



On the other hand, reconstructing the evolution of scale radii of baryon components

is a hard task. For simplicity, we assume that the radii are constant in time, while the

central densities change according to the results of N -body simulations obtained by

Marinacci et al. (2014). In particular we assume that the fraction of each component

with respect to the total baryon mass is conserved.

The equations of motion need the derivatives of the gravitational potentials. A de-

tailed description of the method we employ to compute the potentials and their

derivatives for all the matter components of the Galaxy can be found in Appendix B.

The derivative of the total Milky Way potential, with respect to a given axis xi and

split in all its contributions from the different components, is given by:

∂Φtot

∂xi
(x) =

∂ΦDM

∂xi
(r, ρDM, RDM, Rvir,DM) dark matter (eqs. 5.15/5.16)

+
∂Φb

∂xi
(r, ρb, Rb) stellar bulge (eq. 5.17)

+
∂Φd

∂xi
(R, z, ρd, Rd, zd) stellar disk (eq. 5.18)

+
∂Φw

∂xi
(R, z, ρw, Rw, zw) warm dust (eq. 5.18)

+
∂Φc

∂xi
(R, z, ρc, Rc, zc) cold dust (eq. 5.18)

+
∂ΦH2

∂xi
(R, z, ρH2 , RH2 , zH2) H2 (eq. 5.18)

+
∂ΦHI

∂xi
(R, z, ρHI, RHI.zHI) HI (eq. 5.18). (5.22)

5.5.2 Other objects: Virgo & Andromeda

We also incorporate in our system nearby objects whose presence may have a signif-

icant impact on the clustering factor of neutrinos in the Milky Way. Results from

N -body simulations in Villaescusa-Navarro et al. (2011) (see their Figure 2) show that

the neutrino halo of Virgo-like clusters may extend up to distances comparable to the

one between the Milky Way and the Virgo cluster itself. The neutrino overdensity

caused by the Virgo halo at the Milky Way distance is expected to be of a few percent,

even for the minimum masses allowed by neutrino oscillations (Σmν = 60 meV). At

the location of the Earth, we therefore expect the Virgo effect to be almost of the

same order of magnitude as the Milky Way effect.

We assume for the Virgo Cluster a NFW profile for the DM halo, with a mass of

6.9× 1014 M� (Fouque et al. (2001)). Its distance and position in the sky in Galactic
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coordinates are taken from the NASA Extragalactic Database (NED)6:





DVirgo ≈ 16.5 (±2.0) Mpc

latitudeVirgo = 74.44◦

longitudeVirgo = 283.81◦

=⇒





xVirgo = 1.056 Mpc

yVirgo = −4.299 Mpc

zVirgo = 15.895 Mpc

. (5.23)

We also include the Andromeda galaxy, much lighter than Virgo (by a factor ∼ 500)

but much closer (by a factor ∼ 20) to the Milky Way. Also for Andromeda we

consider a NFW profile and we neglect its baryon content. The galactic latitude and

longitude of Andromeda are taken from the Vizier database7, while its distance, mass

and density profile parameters are given by Kafle et al. (2018), leading to:





DAnd ≈ 0.784 (±0.120) Mpc

latitudeAnd = −21.573311◦

longitudeAnd = 121.174322◦

=⇒





xAnd = −0.377 Mpc

yAnd = 0.623 Mpc

zAnd = −0.288 Mpc

. (5.24)

The density parameters at z = 0 are listed in Table 5.3 for both Andromeda and

the Virgo cluster. The redshift-evolution of the density profile parameters for these

objects is governed by the same equations as for the Milky Way halo (see Section

5.5.1).

The complete geometrical configuration of our system, with the Milky Way, An-

dromeda and the Virgo cluster, is shown in Figure 5.1. The size of the dots corre-

sponds to the virial radius of the NFW halos. We can appreciate the difference in

size and distance for Andromeda and Virgo. However, as N -body simulations show

(Villaescusa-Navarro et al. (2011)), the neutrino halo of each object is always much

more extended than the one of DM, due to the high neutrino thermal velocities.

Thus, despite its high distance from the Milky Way, we expect that Virgo will also

contribute to the neutrino overdensity at the Earth location.

5.5.3 Gravitational potential grid

Solving the Hamiltonian equations of motion requires the derivative of the gravita-

tional potentials listed in eq. 5.22. For computational time reasons, it is convenient

to provide these derivatives explicitly to the code in order to benefit from the use of

textures in the GPU calculations.

6https://ned.ipac.caltech.edu/
7http://vizier.u-strasbg.fr/viz-bin/VizieR-S?NGC%20224
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Virgo cluster Andromeda

Mvir [M�] 6.9× 1014 8.00× 1011

ρ0 [M�/kpc3] 8.08× 105 3.89× 106

Rs [kpc] 399.1 21.8
Rvir [kpc] 2328.8 244.7

Table 5.3: DM density parameters for the Andromeda galaxy and the Virgo cluster at z = 0.
The parameters for Virgo are taken from Fouque et al. (2001), and for Andromeda from
Kafle et al. (2018).
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Figure 5.1: Relative position of the Milky Way, Andromeda Galaxy and the Virgo Cluster.
The size of the dots matches the virial radius of the object. The grey shaded plane represents
the plane of the Milky Way.

121



First of all, we safely assume that outside the virial radius of each DM halo, the

potential is just given by Kepler’s formula. In this way we do not have to build very

broad grids.

Inside the halos, the choice of the grid size depends on how much we want to char-

acterize the halo itself. For us, the most interesting structure is of course the Milky

Way. We want our grid to be much finer than the distance between the Earth and

the Galactic center (≈ 8 kpc) in order to follow very accurately the trajectories of

neutrinos in the regions surrounding the Earth. At the same time, the grid must

extend at least to the maximum value (across the redshift range considered in our

simulation) of the virial radius of the Milky Way, which is approximately 450 kpc.

To fulfill all these requirements, we opt for 0.1 kpc-wide radius bins for the DM halo.

Likewise, for the Andromeda galaxy we also use a binning of 0.1 kpc with an extension

of 350 kpc, i.e. ∼ 50 kpc more than the maximum virial radius at z = 4. On the other

hand, despite the fact that the Virgo cluster is much more extended than the Milky

Way (its virial radius reaches up to 3 Mpc), we do not need a very narrow binning

there, since we are not interested in what happens on very small scales. We use a 1

kpc bin size in radius.

After computing these derivatives in spherical coordinates as a function of the ra-

dius, we get the derivatives in Cartesian coordinates by means of the chain rule (see

Appendix B for more details).

The baryonic components only have cylindrical symmetry, leading to a more subtle

situation. Their 2-D grid in R and z must extend at least up to a point where we

can safely approximate the potential generated by a disk-like profile with the one

generated by a sphere of the same mass. This depends of course on the ratio of scale

radius and scale height: the larger the ratio, the further the grid needs to extend

before we approach a Keplerian law. Looking at Table 5.2, we notice that in the

Milky Way the maximum ratio between the scale radius and the height of the disk is

50, for cold dust. For this configuration, we compute the potential of an exponential

profile as well as its Keplerian counterpart (i.e. a point-like object with the same

mass) to check where the two potentials start to coincide. In Figure 5.2, we plot the

iso-potential contours for these two configurations: at distances of R ≈ 25Rs, the red

and black isocontours, which refer to the cylindrical and spherical case respectively,

differ approximately by just 1%. We therefore extend the grid on which we calculate

the derivative of the potential to at least 30 times the largest scale radius among

all the components. All in all, for the Milky Way, we compute the derivative of the

potential up to ≈ 550 kpc from the Galactic center.
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Figure 5.2: The colormap shows the potential generated by an exponential disk. The red
lines denote isocontours for this potential, while the black ones denote the isocontours for
the potential generated by a point-like source with the same mass. At R/Rs ∼ z/Rs ∼ 25
the difference between the spherical and cylindrical potentials is smaller than 1%.

The bin sizes must be chosen carefully, especially along the direction z orthogonal to

the baryonic disks. For DM, a bin size of 0.1 kpc would be sufficient, but some of

the baryonic components have a disk much thinner than that. We therefore opt for

a logarithmic grid in z that spans from 10−4 to 550 kpc.

All the above choices are summarized in Table 5.4.

Milky Way Andromeda Virgo

r / R 0.1− 550 kpc 0.1− 350 kpc 1− 3000 kpc

∆r / ∆R 0.1 kpc 0.1 kpc 1 kpc

z 10−4 − 550 kpc

∆ log10(z) 0.0337

Table 5.4: Characteristics of the grid used for the derivative of the contributions to the
potential.
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5.6 Results

Figure 5.3 shows the clustering factor, i.e. nνi/nν,0, computed at the Earth’s position

for a given neutrino mass eigenstate as a function of mνi , both for the case with an

NFW distribution and an Einasto distribution for the DM in the Milky Way. We

recall that for Virgo and Andromeda, we only consider DM with an NFW profile. We

also compare our results with those of previous studies (Ringwald & Wong (2004);

de Salas et al. (2017); Zhang & Zhang (2018)), denoted by squares, triangles and

rhombuses.

As expected, regardless of our assumptions on the gravitational potential, the clus-

tering factor increases with the neutrino mass. The impact of baryons in our Galaxy

is found to be significant for any value of the mass. In contrast, adding the Virgo

contribution leads to an enhancement at small neutrino mass, but can actually lead to

less clustering at masses larger than approximately 200 meV. This phenomenon can

be explained in both forward- and back-tracking scenarios. In the forward-tracking

picture, this is easily explained as some of the neutrinos that would have clustered at

the Earth’s position in the absence of Virgo are now clustering in the Virgo potential

well instead. In the back-tracking picture, a fraction of the particles sent out from the

Earth that would have lost energy by leaving the Milky Way’s gravitational potential

have fallen into Virgo’s gravitational potential instead. This leads to an increase in

momentum of these particles with increasing redshift. Thus the phase-space density

is sampled only at large momenta for these particles (instead of all momenta), and

the clustering is overall less pronounced.

We can also see in Figure 5.3 that both the effect of Andromeda and the difference

between an NFW and an Einasto profile for the Milky Way’s DM are negligible.

Assuming mν = 50 meV, the overdensity is (nν/nν,0− 1) ' 7 %, 9 % and 12 % for the

cases with DM only, DM + baryons and DM + baryons + Virgo.

Our results are overall consistent with previous studies. Our clustering factor is

significantly larger than that inferred by Ringwald & Wong (2004), but with a similar

dependence on the neutrino mass. The larger clustering is likely due to our updated

DM profile parameters. The results are even closer to those of de Salas et al. (2017);

Zhang & Zhang (2018), although slightly below in the NFW case (due to different

assumptions on the NFW parameters), both for the DM only case and for the case

with baryonic contributions.

Finally, we test the convergence of our results as a function of the redshift zback. In

the back-tracking approach, zback controls the time at which we stop integrating the
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Figure 5.3: For each neutrino mass state, we plot the ratio nν/nν,0 at the Earth’s position as
a function of the neutrino mass mν . We consider contributions to the gravitational potential
from the Galactic DM halo (top panel: NFW profile, bottom panel: Einasto profile), from
baryons in the Galaxy, from the Virgo cluster and from the Andromeda galaxy. We also
compare with earlier studies (Ringwald & Wong (2004); de Salas et al. (2017); Zhang &
Zhang (2018)).
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neutrino trajectories – while with forward-tracking it would be the initial redshift.

In both cases, zback represents the time at which we assume a perfect homogeneous

and isotropic Fermi-Dirac distribution for the neutrinos. Figure 5.4 shows the recon-

structed value of the clustering factor today when zback is floated – rather than being

fixed to our baseline case of averaging zback ∈ [3.5, 4].

Figure 5.4 shows a strong variation of the clustering factor when zback is in the range

from 0 to 0.5, and a gradual convergence towards an asymptotic value for zback > 1.

This shows that most of the neutrino clustering takes place at very small redshift.

This check is crucial for at least two reasons. First, it shows that the simplicity of

our assumptions concerning the evolution of the DM and baryon density profiles at

very high redshift does not affect the results significantly: what matters most is to

capture the gravitational potential behavior at z < 0.5. Second, this convergence test

proves that it is sufficient to assume a perfect homogeneous and isotropic Fermi-Dirac

distribution for the neutrinos at zback. Indeed, in principle, one should either push the

simulation up to zback →∞, or introduce some small phase-space density fluctuations

δf(tback,x,p) accounting for the amount of clustering that took place between the

onset of structure formation and zback. If gravitational potential wells at zback were

so large that such fluctuations should be taken into account, neglecting them would

introduce a bias in the results that would depend on zback. A non-observation of

this dependence shows that the clustering between z → ∞ and zback can be safely

neglected.

As one can see from Figure 5.4, for masses below 100 meV, the convergence of the

clustering factor is achieved for zback > 2. Instead, for growing neutrino mass, we note

that the solution is slightly less converged, due to the existence of trapped orbits for

some of the neutrinos around the Milky Way and Virgo halos, which originate well

before the initial redshift we choose8. In these cases, the value of zback can have an

impact on the results, but the magnitude of the oscillations seen in Figure 5.4 shows

that this is at most a 10% effect for nν/nν,0 − 1. Since this effect is smaller than the

uncertainties coming from the assumptions on the DM and baryon composition of

the Galaxy, and that neutrino masses above 100 meV are disfavored by cosmological

measurements, we simply present the results (Figure 5.3) at high masses as an average

of the values nν/nν,0 obtained considering zback ∈ [3.5, 4].

8In the forward picture, it is easier to understand the phenomenon: since neutrinos are already
clustering around the Milky Way and the Virgo cluster at z = 4, their momentum distribution
function is not the homogeneous and isotropic Fermi-Dirac at such redshifts. In the backward case,
one has to think that the neutrinos cannot escape the Milky Way and the Virgo cluster until higher
redshifts.
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Figure 5.4: Clustering factor as a function of the earliest redshift zback at which neutrino tra-
jectories are integrated, for different values of the neutrino mass and different astrophysical
configurations.
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We report also our results for a few representative values of neutrino masses. The

two cases mν = 10 meV and 50 meV are particularly interesting, because they stand

for plausible values of the mass of the second and third neutrino mass eigenstates in

the minimal normal hierarchy scenario (that is, when the lightest neutrino is massless

and the mass ordering is normal). Additionally, in the minimal inverted hierarchy

scenario (when the lightest neutrino is massless and the mass ordering is inverted),

the two heaviest neutrinos have a mass close to mν = 50 meV. We also quote our

results for a mass of 300 meV, in tension with recent cosmological bounds, but still

well below the strong and model-independent limit currently set by KATRIN (Aker

et al. (2019)).

For such masses of 10 meV, 50 meV, 100 meV and 300 meV, we obtain that the local

number density of the relic neutrinos is respectively enhanced by 0.53%, 12%, 50%

and 500%. with respect to the cosmological average. We therefore find that the local

number density of relic neutrinos is 56.8 cm−3, 63.4 cm−3, 85 cm−3 and 300 cm−3 for

these cases.

The clustering factor fc,i of each neutrino species enters linearly in the computation

of the detection rate of neutrinos in future experiments like PTOLEMY, namely:

ΓCνB = NT σ̄ vν

Nν∑

i=1

|Uei|2 n0,i fc,i (5.25)

where NT is the number of tritium atoms in the source, σ̄ is the average cross section

of neutrino capture, vν is the neutrino velocity, Nν the total number of neutrino mass

eigenstates, |Uei|2 is the mixing of the i-th neutrino mass eigenstate with the electron

flavor eigenstate, n0,i = 112 cm−3. This rate is expected to be around ∼ 4 yr−1 when

assuming Dirac neutrinos and 100 g of tritium (Cocco et al. (2007)). Using this value,

together with the studies on the energy resolution ∆ of PTOLEMY by Betti et al.

(2019), one can conclude that a 2-σ detection of a non-vanishing neutrino mass will

be possible only if ∆ . 0.86 mν
meV
− 14 meV.
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6
Conclusions

A conclusion is the place where you
got tired thinking

Martin Fischer

6.1 Summary

In the last decade the ΛCDM paradigm has settled as the standard model for cos-

mology. It has been extensively tested through several different observables prob-

ing the expansion history of the Universe (BAOs, SNIa) and the growth of density

fluctuations through cosmic ages (CMB spectra, galaxy clustering, cosmic shear...).

Although there are relevant tensions among parameters estimated with different ob-

servables (like for H0 – Guo et al. (2019); Desmond et al. (2019); Bernal et al. (2016);

Knox & Millea (2020) – or S8 tensions – Efstathiou & Lemos (2018); Leauthaud et al.

(2017)), so far no significant deviations have been detected when minimally extending

the 6-dimensional parameter space by e.g. allowing a non-flat geometry or introduc-

ing a phenomenological model for the parameter of state of dark energy. However,

we know that the ΛCDM model as it is cannot be completely consistent with particle

physics experiments, since in its original form it does not allow neutrinos to have

mass.

Neutrinos were proven to be massive in a series of experiments aimed at detecting

flavor oscillations. Unfortunately, the matrix elements ruling these oscillations do
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not depend on the absolute values of the single masses – mν,i – but rather on the

difference of their squares, thus making it impossible to constrain the total mass scale

– Mν .

On the other hand, cosmology has the power to do so. Neutrinos, in fact, due to

their high thermal velocities, substantially suppress the growth of matter density

perturbations already at linear order. This leads to a scale-dependent growth factor

and to a modification of the matter distribution which affects all scales larger than

knr (eq. 2.23). The impact of neutrinos on the CMB spectra and on the large-scale

structure observables has led to an upper limit for the sum of neutrino masses of

Mν < 0.12 eV at 95 % confidence level (Palanque-Delabrouille et al. (2015a)).

Upcoming surveys (e.g. Euclid, LSST, SKA, DESI) will likely be the first to measure

the absolute mass scale of neutrinos by exploiting several observables of large-scale

structure, such as galaxy clustering, cosmic shear, BAOs, HI intensity mapping and

Ly-α forest. Sprenger et al. (2019) discovered that combining Euclid galaxy cluster-

ing (power spectrum only), cosmic shear with SKA intensity mapping and Planck

the uncertainty on Mν could get as low as 18 meV. On the other hand, Chudaykin

& Ivanov (2019) found that, with a complete analysis of galaxy clustering including

1-loop power spectrum and tree-level bispectrum in redshift space, Euclid-like sur-

veys will measure the sum of neutrino masses with a standard deviation of 28 meV

(i.e. at least a 2-σ detection), value that decreases to 13 meV when the survey is

combined with Planck and to 11 meV when reducing the theoretical uncertainty on

the bispectrum. All the mentioned results were obtained with the MCMC technique.

The results for LSST combined with Planck yield instead a neutrino mass constraint

of σMν ≈ 0.1 eV (Zhan & Tyson (2018)). In order not to deteriorate these forecasts,

a detailed study on the possible degeneracies of the effects of neutrino mass with

other physical phenomena and nuisances, together with a characterization of the sys-

tematics that may affect future surveys is made necessary. The work presented in

this thesis has been carried out with these exact purposes in mind. To this end, we

followed several different approaches: we tested new possible observables that could

come in aid to the standard BAO analysis in future surveys, evaluating their sensi-

tivity to neutrino mass; we assessed the degeneracies induced by nuisance signals and

systematics in standard observables such as galaxy clustering and weak lensing; we

predicted the clustering of relic massive neutrinos in the Milky Way in view of future

direct detection experiments.

Chapter 1 consists of a general introduction to the standard cosmological model,

the ΛCDM paradigm: there we presented the general framework in which we work,
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together with an exhaustive description of the main observables that we use, their

time evolution and their dependence on the fundamental cosmological parameters. In

Chapter 2 we describe in detail the impact that neutrino mass has on the quantities

previously introduced. In particular, we focused on the effect that neutrino free-

streaming has on the growth of density perturbations and in turn on the halo/galaxy

and cosmic shear power spectra and to the BAO feature in the two-point correlation

function (2PCF). These two initial Chapters contain all the relevant information for

a thorough comprehension of the work described in the following ones.

In Chapter 3 we extended previous work on the ΛCDM paradigm to address the im-

pact of massive neutrinos on the linear point (LP). By employing state-of-art N -body

simulations, the DEMNUni (Carbone et al. (2016)) and the Quijote (Villaescusa-

Navarro et al. (2019)), we found the LP position to be weakly sensitive (at the 0.5%

level) to gravitational non-linearities, i.e. its comoving position is nearly redshift-

independent. While we still need to check whether this result is not spoiled by

redshift-space distortions (RSD), what we found is the first important step to show

that the LP can be employed as a cosmological standard ruler in this context. Hence,

we can use the LP to measure cosmological distances (independent of the primordial

cosmological parameters) without assuming a particular spatial curvature of the Uni-

verse or a specific model employed to describe late-time acceleration. Such distances

can be employed to constrain not only the dark energy, dark matter and baryon

energy densities but also the neutrino masses.

We also investigated whether a detection of Mν is possible using the shift of the LP

with respect to the ΛCDM case at a given redshift, survey volume and galaxy number

density. Our proposal was to compare the LP as measured from real data to the

one estimated with an “equivalent” mock galaxy distribution that assumes massless

neutrinos. With our simulation set, we found that for underlying CDM field, the

neutrino mass SNR detection increases for increasing volume, redshift and neutrino

mass – as expected. On the other hand, from the halo investigation, we found that

shot noise suppresses the SNR in a considerable way. Nevertheless deep tomographic

redshift surveys with several redshift bins will help in increasing the SNR. Notice

that this approach is similar to the one presented in Baumann et al. (2019), where a

neutrino-induced phase shift of the BAO in the BOSS DR12 galaxy power spectrum

was detected. However, in this work and in a related analysis (Baumann et al.

(2018)) several non-linear effects are incorporated using phenomenological models of

the non-linear 2PCF, with the concrete risk of being subject to the limitations of
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template-based BAO analyses (see e.g Anselmi et al. (2018a); O’Dwyer et al. (2020)).

Therefore our approach could provide a different route to detecting the neutrino mass.

In Chapter 4 we showed that the effect of baryons on the matter and shear power

spectra can be disentangled at the matter perturbation level by using a tomographic

analysis. In our model we used the analytical formula by Schneider & Teyssier (2015)

(the Baryon Correction Model, BCM) to describe the effect of baryon feedback on the

matter power spectrum, while neutrinos and non-linearities are accounted for by a

Boltzmann solver and the HALOFIT algorithm. We performed a likelihood analysis

for the matter and shear power spectra using the Markov Chain Monte Carlo (MCMC)

method. In the error budget we considered cosmic variance, shot/shape noise and

a systematic error that induces correlation among different wavenumbers (following

Baldauf et al. (2016)) and that describes the uncertainties in the theoretical modelling

of our observables. The results we obtained can be summarized as follows.

First, baryonic effects alone are in principle able to mimic the characteristic suppres-

sion of power at small scales due to a non-vanishing neutrino mass, but the parameters

of the BCM, which have well-established physical meaning, take very unlikely values

and depend strongly on the maximum wavenumber included in the analysis. This

suggests that massive neutrinos and baryonic feedback effects will be indeed distin-

guishable in upcoming surveys.

Second, we studied the degeneracy between the two effects allowing the parameters

of the baryonic feedback model and the neutrino mass to vary simultaneously. In all

cases, we were able to recover the input neutrino mass. In particular, in the matter

clustering case, the degeneracy between neutrino mass and feedback parameters is

completely absent. For the shear power spectrum, we highlight a noticeable degener-

acy between the neutrino mass Mν and the BCM parameter logMc, which controls

the minimum mass of halos that are not deployed of their gas.

Third, we considered how these results are affected by the additional systematic

represented by the intrinsic alignment effect in weak lensing survey; in particular,

we employed the linear alignment model by Hirata & Seljak (2004). Again, we were

able to recover the right input values for what concerns neutrino mass and the AIA

parameter. The posterior PDFs and contours for the cases with and without intrinsic

alignment are almost identical, while we find a degeneracy pattern in the Mν − AIA

plane that is more pronounced when AIA is negative. Also, such parameter seems not

to suffer from any degeneracy with the other feedback parameters.

All in all, if the BCM is used as the baryon feedback fiducial model, measurements

of Mν from future surveys are likely not be affected by biases due to the degeneracy
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between neutrino masses and the feedback parameters.

In Chapter 5 we extended previous works studying the clustering of relic neutrinos

in the Milky Way, in view of future experiments aiming at the first direct detection

of the cosmic neutrino background. We used the back-tracking technique to expand

the original N -one-body method to a more realistic (cylindrical) description of the

baryonic components of the Galaxy, as well as the contribution of nearby objects such

as the Andromeda galaxy and the Virgo cluster. We found that the main contribution

to the enhanced relic neutrino density comes from the DM halo of the Milky Way,

especially for the largest considered neutrino masses. While the impact of Andromeda

is found to be negligible, the contribution of Virgo cluster is relevant to obtain the

correct number density for the smallest neutrino masses. The effect of the latter is not

trivial, as its presence may actually divert some of the neutrinos that would otherwise

cluster on the Milky Way if their mass (velocity) was large (small) enough. To quote

some results, for mν = 10, 50, 100, 300 meV, we obtain that the local number density

of the relic neutrinos is respectively enhanced by 0.53%, 12%, 50% and 500% with

respect to the cosmological average (56 cm−3 flavor−1). Overall, we foresee a small

enhancement of the detection rate in future experiments like PTOLEMY (which is of

the order of ∼ 10 yr−1), with a possible detection of a non-zero neutrino mass linearly

depending on the energy resolution of the detector.

6.2 Future work

The main goal of this thesis was not to forecast the precision with which future

experiments will be able to measure neutrino mass, but rather address, describe and

characterize all the physical phenomena and systematics that may prevent or bias

such measurement. Most of the works presented here are just first steps in tackling

more complex problems that need much further investigation to be solved. All the

physics and the cosmological observables introduced in this thesis can of course be

used to probe and constrain also non-standard cosmologies and their parameters.

Likewise, the analyses presented here can be easily generalized for such purposes.

With this in mind, there are several directions that can be taken.

• With regard to the LP (Chapter 3), in that work we did not consider the impact

of RSD on the LP position. Previous works have highlighted that the LP as

measured from the monopole of the 2PCF is insensitive to RSD at the 0.5%

level (Anselmi et al. (2016)) in the ΛCDM case; however, this has not been

shown yet in the massive neutrino case. On a related note, while theoretical
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arguments suggest that the LP is independent from the late-time acceleration of

the Universe, no tests based on simulations have been carried out yet about the

possibility that a redshift-dependent parameter of state for dark energy could

spoil the standard ruler nature of the LP.

• About degeneracies between neutrino mass and baryon feedback, future devel-

opments concerning clustering need to include a bias model for galaxies as well

as RSD. To further extend the work, it would be of great interested to explore

the degeneracies of the feedback parameters with the cosmological ones both

in clustering and shear. Finally, a possible improvement could in principle be

brought to the constraints on these parameters by studying the cross-correlation

between the two observables: to this end, a detailed study of the cross-covariance

matrix is needed.

• As anticipated in Chapter 4, we are already extending the work presented there

in the direction of non-standard DM models (Parimbelli et al. (in prep.)). While

the goal remains the same, the plan is to run a set of simulations to predict

the suppression/enhancement induced by the presence of warm DM, mixed DM

(cold + warm) and isocurvature perturbations on the matter power spectrum.

This suppression will then be fitted by extending the model by Viel et al. (2012)

and translated to the shear one through eq. 1.60. We also plan to employ some

realistic covariance matrices as computed from simulations (Schneider et al.

(2020)), to assess the impact of the covariance between different multipoles

induced by non-linearities (see eq. 1.63).

• The impressive amount of information contained in the Quijote simulation set

can be exploited for multiple purposes. In particular, we plan to constrain

cosmological parameters, taking particular care of the neutrino mass, employing

three main “observables”: the total matter power spectrum, the halo mass

function and the void size function. In doing so, we aim at using the full

covariance matrix (including cross-covariances between different observables)

computed from the 15,000 realizations of the fiducial model. Indeed, early

results suggest that the use of different probes, even on a small survey volume,

can drastically improve the constraints on neutrino mass and on cosmological

parameter in general.

Another important feature of these simulations is the fact that they are enough

to constitute a considerable training set for machine learning purposes. The goal
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is to use machine learning to constrain the set of cosmological parameters θ in

a likelihood-free way, given a generic observable f {PDF[1 + δ(θ)]}. This was

already done as a test in Villaescusa-Navarro et al. (2019), where the random

forest method was applied to the 1-D density field PDF smoothed on 5 Mpc/h.

With only 1600 simulations of training set, the algorithm was able to correctly

predict σ8 and Ωm, while the failure to constrain Ωb, h and ns was expected

using only the 1-D PDF with one smoothing scale.

Furthermore, Villaescusa-Navarro et al. (2019) also show that the Quijote sim-

ulations can use machine learning to predict the non-linear matter power spec-

trum of any cosmological parameter set within few % up to scales of k ∼
1 h/Mpc, with a significant reduction of computational cost.

• Related to the previous point, an interesting analysis with the Quijote could be

done by using more realistic observables, such as the galaxy power spectrum in

redshift-space. This work can be performed by populating DM halos with galax-

ies according to some (semi-)analytical model describing the number of galaxies

per halo given the properties of the halos themselves. This procedure is known

as Halo Occupation Distribution (HOD, first introduced in Zheng et al. (2005)).

Usually these models predict that each halo has a certain probability of having

a central galaxy (typically a step function centered on some threshold mass

and with a given transition width) and a certain number of satellite galaxies

(growing with the halo mass). To proceed in this direction, we would generate

mock galaxy catalogues with this technique, also accounting for the dispersion

velocities in DM halos. Then, we would measure the multipoles of the galaxy

power spectrum in redshift-space for all the realization, also to obtain realistic

covariance matrices for the subsequent MCMC fitting.

The measurement of neutrino masses will be one of the main goals of future surveys:

its success (or failure) will in any case influence future research not only in cosmology,

but also in particle physics. Therefore it is worth discussing about the possibility that

future measurements will not go in the direction we expect.

We know that large-scale structure contains a lot of information about the underlying

cosmology that still needs to be unveiled. Combining different probes, understanding

their constraining power and assessing the systematics by which they are affected

seems to be the key to disclose such information and open the path to new physics

that could possibly resolve the yet unexplained features of our Universe. Some of

these features include the nature of DM and also question the possibility that the
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effect of DE could be indeed due to a modification of GR at large scales (modified

gravity, MG). Knowing the exact value of the neutrino masses could open the way to

test new physics not only in the Standard Model, but also at the cosmological level.

Testing possible couplings between neutrinos and DM/DE to constrain fundamental

interactions in the early Universe, constraining the growth of neutrino perturbations

in the MG picture: these are just some of the possible ways that one could extend

the standard cosmological model.

Another intriguing possibility is that particle physics experiment like PTOLEMY or

KATRIN will measure a neutrino mass in significant tension with the complementary

cosmological ones. This in principle does not mean that the whole cosmology needs

to be refounded, as typical measures of Mν from cosmological observables are model-

dependent and refer to one-parameter extensions of the ΛCDM model obtained with

Bayesian statistics (MCMC); however it does mean that the ΛCDM paradigm needs

to be revised in order to reconcile this inconsistency. Possible solutions may involve

modifications of gravity that may mimic the effect of neutrinos or again interactions

between neutrinos and the dark sector. In conclusion, in view of upcoming surveys,

we are on the edge of an exciting era for cosmology, both whether future results will

confirm our predictions or they will be completely unexpected.

The work presented in this thesis addresses neutrinos in the extended frame of the

ΛCDM paradigm. However, the approaches used here can be easily extended and

generalized to probe any other additional effect to the ΛCDM paradigm: this is the

main reason why this work can be considered as a first step in tackling any problem

concerning the extension of the cosmological model.
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A
Non-linear power spectra: HALOFIT

A.1 A quick prediction for non-linearities

The prediction of the non-linear matter power spectrum up to very small scales (k ∼
5− 10 h/Mpc) is a key ingredient for cosmic shear surveys and large-scale structure

probes in general. Unfortunately, this is a prohibitive task for perturbation theory,

since many of the assumptions made in the calculations break down at mildly non-

linear scales. Therefore, one must rely onN -body simulations which on one hand solve

the full non-linear system of equations but on the other hand are time consuming.

In the last two decades, alternative directions have been taken to overcome this issue

when in need of a quick estimate of non-linear clustering. At the turn of the millen-

nium the halo model was developed (see Cooray & Sheth (2002) for a review): this

describes the full non-linear matter field as correlations between particles belonging

to different dark matter halos. Despite its elegance, however, the halo model is way

too simplistic to catch all the complicate aspects of matter (or galaxy) clustering and

fails to reproduce the results from N -body simulations up to ∼ 20% at the typical

scale of halo sizes.

On the other hand, the increasing computing performances have allowed to run thou-

sands of simulation, making it possible to find fitting formulae able to reproduce the

non-linear clustering to a % level for a large number of cosmological models including

non-standard ones. This procedure, commonly named HALOFIT, has been widely

used in shear survey analyses (Abbott et al. (2018, 2019); Hildebrandt et al. (2017);

138



Köhlinger et al. (2017)). Contrarily to emulators (Heitmann et al. (2010, 2009);

Lawrence et al. (2010b,a, 2017); DeRose et al. (2019); McClintock et al. (2019b);

Zhai et al. (2019); McClintock et al. (2019a); Euclid Collaboration et al. (2019b);

Angulo et al. (2020)), which return the non-linear correction to the linear power

spectrum through interpolating techniques, HALOFIT consists of an actual fitting

function, with a precision that nowadays reaches ∼ 5% at k ∼ 10 h/Mpc for ΛCDM

models.

In this Appendix we go quickly through the various and most famous HALOFIT

versions used in literature, going in chronological order. For all of them, we use the

following common notation:

• Plin(k) is the linear power spectrum.

• ∆2
lin(k) = k3 Plin(k)

2π2 is the linear effective power per logarithmic interval of k.

• The same quantities with the subscript “nl” indicate that the non-linear power

spectrum is involved.

• σ2(R) =
∫∞

0
d ln k ∆2

lin(k) W 2(kR), is the root-mean square density fluctuation

smoothed on a certain scale R, where the window function will be, where not

otherwise specified, a Gaussian.

• kσ is the non-linearity scale, for which σ2(1/kσ, z) ≡ 1.

• The effective index is 3 + neff = − d lnσ2(R)
d lnR

∣∣∣
σ=1

.

• The spectral curvature is C = − d2 lnσ2(R)
d lnR2

∣∣∣
σ=1

.

A.2 The original HALOFIT

The first HALOFIT version (Smith et al. (2003)) was based on a set of DM only N -

body simulations, featuring Einstein-de Sitter, open low-density and ΛCDM models.

The description of the non-linear clustering happens through the summation of two

terms, one labelled Q for “quasi-linear”, dominating at large scales, and one labelled

H for “halo”, expressing correlations of particle pairs in the same DM halo.

∆2
nl(k) = ∆2

Q(k) + ∆2
H(k). (A.1)

The single terms are given by
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∆2
Q(k) = ∆2

lin(k)

{
[1 + ∆2

lin(k)]
β

1 + α∆2
lin(k)

}
exp [−f(y)], (A.2)

where y = k/kσ and f(y) = y/4 + y2/8, and

∆2
H(k) =

a y3f1(Ωm)

1 + b yf2(Ωm) + [c f3(Ωm) y]3−γ
1

1 + µy−1 + νy−2
. (A.3)

The fitted parameters (a, b, c, α, β, γ, µ, ν) and the three fi(Ωm) functions are

• log a = 1.4861 + 1.8369 ns + 1.6762 ns
2 + 0.7940 ns

3 + 0.1670 ns
4 − 0.6206 C

• log b = 0.9463 + 0.9466 ns + 0.3084 ns
2 − 0.9400 C

• log c = −0.2807 + 0.6669 ns + 0.3214 ns
2 − 0.0793 C

• α = 1.3884 + 0.3700 ns − 0.1452 ns
2

• β = 0.8291 + 0.9854 ns + 0.3401 ns
2

• γ = 0.8649 + 0.2989 ns + 0.1631 C

• log µ = −3.5442 + 0.1908 ns

• log ν = 0.9589 + 1.2857 ns

• f1(Ωm) = Ωm(z)−0.0307; f2(Ωm) = Ωm(z)−0.0585; f3(Ωm) = Ωm(z)0.0743.

A.3 Addition of massive neutrinos

The HALOFIT version by Bird et al. (2012) corrects the original version including the

effect of massive neutrinos. By employing and fitting N -body simulations with two

fluids (DM and neutrinos with masses up to 0.6 eV), the improved formulae are based

on the same equations of Smith et al. (2003) but with slightly different coefficients

and terms.

The halo term is modified to ∆2
H(k) → ∆2

H(k) (1 + Qν), where fν is the neutrino

fraction and

Qν =
fν [2.080− 12.4(Ωm − 0.3)]

1 + 1.20× 10−3y3
. (A.4)

The quasi-linear term is modified as

∆2
Q(k) = ∆2

lin(k)





[
1 + ∆̃2

lin(k)
]β̃

1 + α∆̃2
lin(k)





exp [−f(y)], (A.5)
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where

∆̃2
lin(k) = ∆2

lin(k)

(
1 +

26.3 fνk

1 + 1.5 k2

)
(A.6)

and

β̃ = β + fν (−6.49 + 1.44 n2
s). (A.7)

Another slight change with respect to Smith et al. (2003) is γ → γ+0.316−0.0765 ns−
0.835 C.

A.4 The Takahashi model

A revisiting and an improvement to the accuracy of the original HALOFIT was

carried out by Takahashi et al. (2012). The new fitting formulae are calibrated on

16 cosmological models around the WMAP best-fit cosmological parameters (1, 3, 5,

and 7 year results), including dark energy models with a constant equation of state.

The actual formulae are the same of Smith et al. (2003) (eq. A.1), but with updated

coefficients:

• log a = 1.5222 + 2.8553 neff + 2.3706 n2
eff + 0.9903 n3

eff + 0.2250 n4
eff − 0.6038 C+

0.1749 ΩΛ(z) (1 + w)

• log b = −0.5642 + 0.5864 neff + 0.5716 n2
eff − 1.5474 C + 0.2279 ΩΛ(z) (1 + w)

• log c = 0.3698 + 2.0404 neff + 0.8161 n2
eff + 0.5869 C

• α =
∣∣∣6.0835 + 1.3373 neff − 0.1959 n2

eff − 5.5274 C
∣∣∣

• β = 2.0379− 0.7354 neff + 0.3157 n2
eff + 1.2490 n3

eff + 0.3980 n4
eff − 0.1682 C

• γ = 0.1971− 0.0843 neff + 0.8460 C

• µ = 0

• log ν = 5.2105 + 3.6902 neff

• f1(Ωm) = Ωm(z)−0.0307

• f2(Ωm) = Ωm(z)−0.0585

• f3(Ωm) = Ωm(z)0.0743

With this new procedure, HALOFIT can achieve 5% precision for k ≤ 1 h/Mpc in

the redshift range 0 ≤ z ≤ 10 and 10% for k ≤ 10 h/Mpc in the range 0 ≤ z ≤ 3.
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A.5 HMcode: a halo model approach

HMcode is a modified version of the original halo model that adds some physically mo-

tivated degrees of freedom to halo profiles in order to relieve some discrepancies with

the actual non-linear matter clustering, especially in the transition regime between

the 1-halo and the 2-halo terms. It was released in two different versions. The for-

mer (Mead et al. (2015)) is based on the OverWhelmingly Large Simulations (Schaye

et al. (2010); van Daalen et al. (2011)) and provides non-linear spectra accurate to 5%

up to scales of 10 h/Mpc for ΛCDM models including baryon feedback. The latter

(Mead et al. (2016)) besides updating some fitting coefficients, also includes the effect

of massive neutrinos, dark energy models and screening mechanisms.

In the classical derivation of the halo model, the total matter power spectrum is

given by the summation of two terms describing the correlation between particle

pairs belonging to the same halo (1-halo term) and to different halos (2-halo term):

Pnl(k, z) = P1h(k, z) + P2h(k, z), (A.8)

where

P1h(k, z) =

∫ ∞

0

dM
M2

ρ̄2

dn

dM
(z) u2(k|M, z) (A.9)

P2h(k, z) = Plin(k)

[∫
dM

M

ρ̄

dn

dM
(z) b(M, z) u(k|M, z)

]2

, (A.10)

while u(k|M, z) is the Fourier transform of the NFW profile for a halo of mass M ,
dn
dM

is the halo mass function which we assume to be Sheth-Tormen (Sheth & Tormen

(1999)) and b(M) the corresponding halo bias. Halos are assumed to have a concen-

tration that follows the Bullock distribution (Bullock et al. (2001)) with minimum

concentration Abar = 4.

The approach used by Mead et al. (2015, 2016) is to modify the fixed parameters of

the halo model and tune them as functions of mass and redshift in order to resolve

the intermediate scales problems.

The main quantities modified are the virialized halo overdensity ∆v, the linear critical

density for collapse δc and the minimum halo concentration Abar. Depending on

the physical processes and gravity models considered, the values of the new free

parameters change. We only recap here the up-to-date ones, valid for DM only runs

and flat ΛCDM cosmologies (see Table A.1).

• ∆v = 200→ 418 Ωm(z)−0.352
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Parameter Meaning Original value New halofit

∆v(z) Virialized halo overdensity 200 418 Ωm(z)−0.352

δc(z) Critical density for collapse 1.686 [1.59 + 0.0314 lnσ8(z)]× [1 + 0.0123 log Ωm(z)]
η(z) Halo bloating 0 0.64− 0.3 σ8(z)
fd(z) Linear damping factor 0 0.0095 σd,100(z)1.37

k∗(z) One-halo damping 0 0.584 σ−1
d,0(z)

Abar Minimum halo concentration 4 3.43
α(z) Quasi-linear softening 1 3.24× 1.85neff

Table A.1: The Table shows the values of the parameters used by HMcode (Mead et al.
(2015, 2016)) to fit the matter power spectrum from DM only simulations in ΛCDM cos-
mologies. In this work we typically use these parameters for the non-linear power spectrum.

• δc = 1.686→ [1.59 + 0.0314 lnσ8(z)]× [1 + 0.0123 log Ωm(z)]

• Abar = 4→ 3.43

The non-linear power spectrum gains a smoother transition from the 1-halo to the

2-halo terms through the introduction of a softening parameter

Pnl(k, z) = {[P1h(k, z)]α + [P2h(k, z)]α}1/α
(A.11)

where

P1h(k, z) =

[∫ ∞

0

dM
M2

ρ̄2

dn

dM
u2(νηk|M, z)

] [
1− e−(k/k∗)2

]
(A.12)

P2h(k, z) = Plin(k, z)
[
1− fd tanh2(kσd,0/

√
fd)
]
. (A.13)

The remaining free parameters are a halo bloating parameter η, a linear damping

factor fd and a 1-halo damping term k∗. All of them are redshift dependent quantities

with values

η(z) = 0.64− 0.3 σ8(z) (A.14)

fd(z) = 0.0095 σd,100(z)1.37 (A.15)

k∗(z) = 0.584 σd,0(z)−1 (A.16)

where

σd,R(z) =
1

3

∫ ∞

−∞
d ln k

∆2
lin(k)

k2
W 2

TH(kR). (A.17)

Notice that in this case the window function is a top-hat in configuration space.

The quasi-linear softening is given by
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α(z) = 3.24× 1.85neff , (A.18)

with a slightly different effective index with respect to the one defined above:

3 + neff = − d lnσ2(R)

d lnR

∣∣∣∣
σ=δc

. (A.19)
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B
Solving the Poisson equation

B.1 A general solution

In this Appendix we explain how we solved the Poisson equation to finally compute

the neutrino clustering at the Sun’s position (see Chapter 5 for all the details).

The Poisson equation relates the density field to the gravitational potential in physical

coordinates r:

∇2Φ(r) = 4πGρ(r). (B.1)

The solution for this equation can be found in terms of Green’s function. The Green’s

function for the Laplacian is G∇2(r) = −1/(4π|r|), which yields the solution:

Φ(r) = −4πG

∫
d3x

ρ(x)

|r− x| . (B.2)

In the case of spherical symmetry, this integral becomes:

Φ(r) = −4πG

[
1

r

∫ r

0

dx x2 ρ(x) +

∫ ∞

r

dx x ρ(x)

]
. (B.3)

Unfortunately, the previous treatment is of little use if no particular symmetry is

involved in the problem. One typically expands the solution in spherical harmonics,

but what we need is an exact solution. Taking the Fourier transform of both sides of

eq. B.1 and using the fact that the equality obtained must be valid for any density

distribution, we end up with:

Φk = −4πGρk
k2

. (B.4)
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The solution to the Poisson equation is then found by Fourier transforming back the

previous equation:

Φ(r) = −4πG

∫
d3k

(2π)3

ρk
k2

eik·r (B.5)

and the force per unit mass with respect to any Cartesian coordinate xi is:

∂Φ

∂xi
(r) = −4πG

∫
d3k

(2π)3
ρk

iki
k2

eik·r. (B.6)

B.2 Spherical symmetry

In this Section we provide solutions to the Poisson equation for the profiles we used

in Chapter 5, namely the truncated NFW and the Einasto profiles.

B.2.1 Navarro-Frenk-White profile

The NFW profile is a fair approximation of the density profiles of DM halos. In

principle, the only free parameters are a density normalization ρ0 and a scale radius

Rs. However, in this way the mass enclosed in a radius r would diverge at infinity, so

there must be a point where the profile gets truncated. This so-called virial radius

Rvir completes the truncated NFW profile:

ρt−NFW(r) =
ρ0

r
Rs

(
1 + r

Rs

)2 Θ (r −Rvir) , (B.7)

where Θ(x) is the Heaviside step-function. The total mass enclosed in the profile

becomes finite in this way:

Mvir,t−NFW = 4πρ0R
3
s

[
ln

(
1 +

Rvir

Rs

)
− Rvir/Rs

1 + Rvir

Rs

]
(B.8)

To compute the potential we make use of eq. B.3 distinguishing between two cases.

When r > Rvir the second integral vanishes and the first returns the Keplerian po-

tential Φ(r) = −GMvir

r
. On the other hand, when r < Rvir,

Φ(r) = −4πGρ0R
2
s




ln
(

1 + r
Rs

)

r/Rs

− 1

1 + Rvir

Rs


 . (B.9)

All in all, we can compact the notation and write:

Φt−NFW(r, ρ0, Rs, Rvir) = −4πGρ0R
2
s




ln
(

1 + m
Rs

)

r/Rs

− Rvir/M

1 + Rvir

Rs


 , (B.10)
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where m = min(r, Rvir) and M = max(r, Rvir).

The derivatives can be easily computed through the chain rule:

∂Φt−NFW

∂xi
(r) = 4πGρ0R

2
s

xi
r2




ln
(

1 + m
Rs

)

r/Rs

− Rvir/M

1 + m
Rs


 . (B.11)

B.2.2 Einasto profile

The Einasto profile (Einasto (1965)) was the first proposed as a universal model for

DM halos profiles and its shape can be rearranged as:

ρEin(r) = ρ0 e
−(r/Rs)α (B.12)

where ρ0 is a normalization constant, Rs is a scale radius and α is the slope of the

logarithm of the profile.

The mass enclosed in the profile is given by:

Mvir,Ein =
4πρ0R

3
s

α
Γ

(
3

α

)
. (B.13)

From Green’s function analysis, we find that the potential generated by an Einasto

halo is given by:

ΦEin(r, ρ0, Rs, α) = −4πGρ0R
2
s

α

[
Y −1/α Γ

(
3

α
, 0, Y

)
+ Γ

(
2

α
, Y,∞

)]
, (B.14)

where Y = (r/Rs)
α and we have defined the incomplete Γ function:

Γ(x, l, u) =

∫ u

l

dt tx−1e−t. (B.15)

The derivative is once again computed using the chain rule: ∂ΦEin

∂xi
= dΦEin

dY
dY
dr

∂r
∂xi

=
dΦEin

dY
αY
r
xi
r

∂ΦEin

∂xi
(r) =

4πGρ0R
3
s

αr2
Γ

(
3

α
, 0, Y

)
xi
r
. (B.16)

B.2.3 Milky Way bulge

The bulge of the Milky Way has an ellipsoidal form with a ratio of semi-axes of

∼ 0.6. However, the size of the bulge is much smaller than the distance of the Sun

with respect to the galactic center (approximately 0.7 vs. 8 kpc), so for our purposes

it can be approximated to a sphere of effective radius Rs.
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From Misiriotis et al. (2006) we see that the bulge component of the Milky Way,

once spherical symmetry is restored, follows a Sersic law with index n = 4 (i.e. a de

Vaucouleurs profile):

ρb(r) = ρ0 exp

[
−A

(
r

Rs

)1/4
] (

r

Rs

)−7/8

, (B.17)

with A = 2n− 1
3
≈ 7.67. Using this definition the bulge density at the Sun’s position

in approximately 0.02% of the one at Rs. This further a posteriori check reassures

us about the spherical approximation.

The gravitational potential can be computed using equation B.3:

Φb(r) = −G
r

[Min(r) +Mout(r)] , (B.18)

where we defined Min(r) ≡ 4π
∫ r

0
dx x2ρ(x) and Mout(r) ≡ 4πr

∫∞
r

dx x ρ(x). Ap-

plying this to equation B.17, we obtain:

Min(r) =
πρ0R

3
s

16A17/2

{
2027025

√
π erf

(
X1/2

)
− 2e−XX1/2 ×

×
(
128X7 + 960X6 + 6240X5 + 34320X4 + 154440X3+

+ 540540X2 + 1351350X + 2027025
)
}

(B.19)

Mout(r) =
πρ0R

3
s

A17/2
X4

{
105
√
π erfc

(
X1/2

)
+

+2e−XX1/2
(
8X3 + 28X2 + 70X + 105

)
}
, (B.20)

where for sake of clarity we set X = A
(

r
Rs

)1/4

.

The derivatives are computed according to the chain rule once again:

∂Φb

∂xi
(r) =

Gxi
r3

{
[Min(r) +Mout(r)]−

X

4r

[
dMin

dX
+

dMout

dX

]}
. (B.21)

B.3 Disks

All the relevant density profiles that are not spherically symmetric (hot gas, cold

gas, stars in the disk) typically satisfy axial symmetry. Moreover the radial and the

zenithal components are generally separable. In this Section we first provide a general

solution to the Poisson equation in cylindrical coordinates and then the specific one

for the exponential profile we used in Chapter 5.
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B.3.1 General solution of Poisson equation in cylindrical coordinates

We will assume that the axially symmetric profiles have the following form:

ρ(R, z) = ρ0 F (R) H(z). (B.22)

In such a case the Fourier transform of the density profile is given by:

ρk(k, q) =

∫ ∞

0

dR R

∫ 2π

0

dθ e−ikR cos θ

∫ ∞

−∞
dz e−iqz ρ0 F (R) H(z) =

= 2πρ0

∫ ∞

0

dR R F (R) J0(kR)

∫ ∞

−∞
dz e−iqz H(z), (B.23)

where J0(x) the 0-th order Bessel function of the first kind.

Consequently, the potential may be expressed in its most general form as:

Φ(R, z) = −2Gρ0

∫ ∞

0

dk k

[∫ ∞

0

ds s F (s) J0(ks)

]
J0(kR)×

×
∫ ∞

−∞
dq eiqz

[∫∞
−∞ dt H(t) e−iqt

]

k2 + q2
. (B.24)

B.3.2 Exponential disks

In these cases the two zenithal and radial distributions are well approximated by

exponential functions:

ρd(R, z) = ρ0 e
−R/Rs e−|z|/zs , (B.25)

where now R2 = x2 + y2 and Rs and zs represent some scale radius and height,

respectively.

In the case of exponential density profile, one gets, for the density Fourier transform:

ρk = 4πρ0
zs

1 + (qzs)2

R2
s[

1 + (kRs)
2]3/2 , (B.26)

while the gravitational potential can be computed as:

Φd(R, z) = −4πGρ0zsR
2
s

∫ ∞

0

dk k
1
k
e−k|z| − zse−|z|/zs

[
1 + (kRs)

2]3/2 [1− k2z2
s ]
J0(kR). (B.27)

The derivative of this potential is different depending we are computing it with re-

spect to the zenithal axis z or the galaxy plane (x, y). For the former we can just
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differentiate the integrand function; for the latter, we can use the relation between

Bessel functions ∂J0(kR)
∂xi

= ∂J0(kR)
∂R

∂R
∂xi

= −k J1(kR)xi
R

:

∂Φd

∂{x, y}(R, z) = 4πGρ0zsR
2
s

{x, y}
R

∫ ∞

0

dk k
k
(

1
k
e−k|z| − zse−|z|/zs

)
[
1 + (kRs)

2]3/2 [1− k2z2
s ]
J1(kR),

(B.28)

∂Φd

∂z
(R, z) = 4πGρ0zsR

2
s

z

|z|

∫ ∞

0

dk k
e−k|z| − e−|z|/zs

[
1 + (kRs)

2]3/2 [1− k2z2
s ]
J0(kR). (B.29)

All these equations are Hankel transforms and can be easily computed with tools like

FFTlog (Talman (1978); Hamilton (2000)).
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